GCD类模板

快速幂1

ll quickpow(ll x, ll y, ll mod)
{
	if (y == 0)return 1;
	if (y == 1)return x % mod;
	else
	{
		if (y % 2 == 0)
		{
			ll t = quickpow(x, y / 2, mod);
			return (t * t)%mod;
		}
		else
		{
			ll t = quickpow(x, y / 2, mod);
			t = (t * t)%mod;
			return (t * (x%mod)) % mod;
		}
	}
}

快速幂2

ll quickpow(ll x, ll y,ll mod) {
	ll ans = 1; x %= mod;
	while (y) {
		if (y & 1)ans = ans * x%mod;
		x = x * x%mod;
		y >>= 1;
	}
	return ans;
}

扩展欧几里得算法

ll exgcd(ll a, ll b, ll &x, ll &y) {
	if (!b) {
		x = 1, y = 0;
		return a;
	}
	int d = exgcd(b, a%b, y, x);
	y -= a / b * x;
	return d;
}

欧拉函数1(直接求解欧拉函数)

ll euler(ll n) { //返回euler(n)     
	ll res = n, a = n;
	for (ll i = 2; i*i <= a; i++) {
		if (a%i == 0) {
			res = res / i * (i - 1);//先进行除法是为了防止中间数据的溢出     
			while (a%i == 0) a /= i;
		}
	}
	if (a > 1) res = res / a * (a - 1);
	return res;
}

欧拉函数2(快)

void Euler(){
    phi[1] = 1;
    for(int i = 2; i < N; i ++){
        if(!phi[i]){
            for(int j = i; j < N; j += i){
                if(!phi[j]) phi[j] = j;
                phi[j] = phi[j] / i * (i-1);
            }
        }
    }
}

欧拉函数3(更快)

#include <bits/stdc++.h>
const int N = 1e7 + 10;
#define ll long long
using namespace std;
int prime[N], cnt, phi[N], n;//prime[0]=2,cnt表示小于等于n有几个质数
bool st[N];
void Euler(int n)
{
	phi[1] = 1;
	for (int i = 2; i <= n; i++)
	{
		if (!st[i])
		{
			prime[cnt++] = i;
			phi[i] = i - 1;
		}
		for (int j = 0; prime[j] <= n / i; j++)
		{
			int t = prime[j] * i;
			st[t] = true;
			if (i%prime[j] == 0)
			{
				phi[t] = phi[i] * prime[j];
				break;
			}
			phi[t] = phi[i] * (prime[j] - 1);
		}
	}
}

整点问题

平面直角坐标系上,(a,b)和(c,d)点之间有  gcd(a-c,b-d)-1  个整点 (不包括(a,b),(c,d))

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值