粒子群算法简介
前言
本文内容借鉴于 刘衍民的博士论文:“粒子群算法的研究及应用”.
现有的大多数群智能算法,如:乌鸦算法、鸽子算法、蚁群算法、萤火虫算法和灰狼优化算法等,都可以归类为粒子群算法.(个人觉得,这些算法就是整个稀奇古怪的名字,颇有舞文弄墨,强造创新点之嫌,其算法本质仍为粒子群算法).
粒子群算法与遗传算法最大的不同之处在于,不使用交叉和变异等进化算法产生后代,而是根据种群中其他粒子的分布来更新粒子的位置.
粒子群算法及其基础理论
粒子群算法是一种基于种群的智能算法,种群中每个成员叫做粒子,代表着一个潜在的可行解,而食物的位置则被认为是全局最优解.在飞行过程中,群体中所有的粒子都具有记忆的能力,能对自身位置和自身经历过的最佳位置进行调整.为了实现接近食物位置这个目的,每个粒子通过不断地向自身经历过的最佳位置(pbest)和种群中最好的粒子位置(gbest)学习,最终接近食物位置.(p,表示personal,“自知部分”.g,表示global, “社会部分”).
下图给出了粒子速度和位置在第t代和第t+1代的调整示意图,其中五角星的位置为食物位置,v1表示第t代"社会部分"学习引起粒子向gbest方向飞行的速度;v2表示"自知部分"学习引起粒子向pbest方向飞行的速度;v3表示粒子自身具有的速度.在v1,v2和v3的共同作用下,最终粒子以速度vt+1到达新的粒子位置.
粒子群算法的数学描述如下,假设种群规模为N,在迭代时刻t,每个粒子在D维空间中的坐标位置可以表示为:
x i ( t ) ‾ = ( x i 1 , x i 2 , . . . x i d , . . . x i D ) \overline{x_i\left( t \right) }=\left( x_{i}^{1},x_{i}^{2},...x_{i}^{d},...x_{i}^{D} \right) xi(t)=(xi1,xi2,...xid,...xiD)
粒子的速度表示为:
v i ( t ) ‾ = ( v i 1 , v i 2 , . . . v i d , . . . v i D ) \overline{v_i\left( t \right) }=\left( v_{i}^{1},v_{i}^{2},...v_{i}^{d},...v_{i}^{D} \right) vi