Monsters Battle Royale

Monsters Battle Royale

Problem Statement

 

There are N monsters, numbered 1,2,…,N.

Initially, the health of Monster i is Ai.

Below, a monster with at least 1 health is called alive.

Until there is only one alive monster, the following is repeated:

  • A random alive monster attacks another random alive monster.
  • As a result, the health of the monster attacked is reduced by the amount equal to the current health of the monster attacking.

Find the minimum possible final health of the last monster alive.

Constraints

 

  • All values in input are integers.
  • 2≤N≤105
  • 1≤Ai≤109

Input

 

Input is given from Standard Input in the following format:

N
A1 A2 … AN

Output

 

Print the minimum possible final health of the last monster alive.

Sample Input 1

 

4
2 10 8 40

Sample Output 1

 

2

When only the first monster keeps on attacking, the final health of the last monster will be 2, which is minimum.

Sample Input 2

 

4
5 13 8 1000000000

Sample Output 2

 

1

Sample Input 3

 

3
1000000000 1000000000 1000000000

Sample Output 3

 

1000000000

要求找到最后一个活着的怪物的可能最终最小的生命值。就是不断辗转相减嘛(比如第一个样例:40血的怪兽可以被10血的怪兽经四次消灭掉,同理10血,2血的都会被2血的灭掉,所以最后只剩2血的,其他攻击方法结果也是这样。再举个没有倍数关系的:如2和5,让2血攻击5血的,剩2血的和3血;再次让2攻击3血的,剩1血和2血;最后让1血攻击2血;最后就是俩1血的,让一个攻击另一个,最后只能剩下一个1血的。),就是求所有数的最小公倍数就好了。

#include<bits/stdc++.h>

using namespace std;
const int maxn = 1e5+10;;
int main()
{
	int n;
	cin >> n;
	int a[maxn];
	for(int i = 0;i < n;i ++){
		cin >> a[i];
	}
	int ans = a[0];
	for(int i = 1;i < n;i ++){
		ans = __gcd(ans,a[i]);
	}
	cout << ans << endl;
	return 0;
}

 

### 关于与'Monsters'相关的二分概念或应用 在处理涉及‘Monsters’的游戏开发或其他应用场景时,二分查找算法能够被用于优化多种操作效率。例如,在游戏中怪物(Monsters)可能具有不同的属性值如攻击力、防御力或者速度等,这些数值通常存储在一个有序数组中。 当需要快速定位特定攻击力量级的Monster实例位置而不必遍历整个列表时,就可以利用二分查找来实现高效检索[^1]。下面给出一段Python代码演示如何基于给定条件筛选符合条件的第一个Monster对象: ```python def binary_search_monster(monsters, target_attack): low, high = 0, len(monsters) - 1 while low <= high: mid = (low + high) // 2 if monsters[mid].attack >= target_attack and (mid == 0 or monsters[mid-1].attack < target_attack): return mid elif monsters[mid].attack < target_attack: low = mid + 1 else: high = mid - 1 return -1 ``` 此函数接收一个按照`attack`属性升序排列好的Monster对象列表以及目标最小攻击力作为参数,并返回第一个不低于指定攻击力水平的对象索引;如果没有找到,则返回-1表示不存在这样的元素[^2]。 对于数据结构方面,考虑到游戏场景下可能会频繁增删节点的情况,除了基本线性表外还可以考虑采用平衡树(Balanced Tree)或是跳跃表(Skip List)这类支持动态调整的数据结构来维护已知Monster集合并保持其内部顺序不变以便随时调用上述二分逻辑进行查询操作[^3]。 为了更好地理解具体的应用方式,请参考如下几个相关问题进一步探讨该主题的不同侧面:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值