Monsters Battle Royale

Monsters Battle Royale

Problem Statement

 

There are N monsters, numbered 1,2,…,N.

Initially, the health of Monster i is Ai.

Below, a monster with at least 1 health is called alive.

Until there is only one alive monster, the following is repeated:

  • A random alive monster attacks another random alive monster.
  • As a result, the health of the monster attacked is reduced by the amount equal to the current health of the monster attacking.

Find the minimum possible final health of the last monster alive.

Constraints

 

  • All values in input are integers.
  • 2≤N≤105
  • 1≤Ai≤109

Input

 

Input is given from Standard Input in the following format:

N
A1 A2 … AN

Output

 

Print the minimum possible final health of the last monster alive.

Sample Input 1

 

4
2 10 8 40

Sample Output 1

 

2

When only the first monster keeps on attacking, the final health of the last monster will be 2, which is minimum.

Sample Input 2

 

4
5 13 8 1000000000

Sample Output 2

 

1

Sample Input 3

 

3
1000000000 1000000000 1000000000

Sample Output 3

 

1000000000

要求找到最后一个活着的怪物的可能最终最小的生命值。就是不断辗转相减嘛(比如第一个样例:40血的怪兽可以被10血的怪兽经四次消灭掉,同理10血,2血的都会被2血的灭掉,所以最后只剩2血的,其他攻击方法结果也是这样。再举个没有倍数关系的:如2和5,让2血攻击5血的,剩2血的和3血;再次让2攻击3血的,剩1血和2血;最后让1血攻击2血;最后就是俩1血的,让一个攻击另一个,最后只能剩下一个1血的。),就是求所有数的最小公倍数就好了。

#include<bits/stdc++.h>

using namespace std;
const int maxn = 1e5+10;;
int main()
{
	int n;
	cin >> n;
	int a[maxn];
	for(int i = 0;i < n;i ++){
		cin >> a[i];
	}
	int ans = a[0];
	for(int i = 1;i < n;i ++){
		ans = __gcd(ans,a[i]);
	}
	cout << ans << endl;
	return 0;
}

 

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
### 关于与'Monsters'相关的二分概念或应用 在处理涉及‘Monsters’的游戏开发或其他应用场景时,二分查找算法能够被用于优化多种操作效率。例如,在游戏中怪物(Monsters)可能具有不同的属性值如攻击力、防御力或者速度等,这些数值通常存储在一个有序数组中。 当需要快速定位特定攻击力量级的Monster实例位置而不必遍历整个列表时,就可以利用二分查找来实现高效检索[^1]。下面给出一段Python代码演示如何基于给定条件筛选符合条件的第一个Monster对象: ```python def binary_search_monster(monsters, target_attack): low, high = 0, len(monsters) - 1 while low <= high: mid = (low + high) // 2 if monsters[mid].attack >= target_attack and (mid == 0 or monsters[mid-1].attack < target_attack): return mid elif monsters[mid].attack < target_attack: low = mid + 1 else: high = mid - 1 return -1 ``` 此函数接收一个按照`attack`属性升序排列好的Monster对象列表以及目标最小攻击力作为参数,并返回第一个不低于指定攻击力水平的对象索引;如果没有找到,则返回-1表示不存在这样的元素[^2]。 对于数据结构方面,考虑到游戏场景下可能会频繁增删节点的情况,除了基本线性表外还可以考虑采用平衡树(Balanced Tree)或是跳跃表(Skip List)这类支持动态调整的数据结构来维护已知Monster集合并保持其内部顺序不变以便随时调用上述二分逻辑进行查询操作[^3]。 为了更好地理解具体的应用方式,请参考如下几个相关问题进一步探讨该主题的不同侧面:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值