递归方式
基本思想
- 将数组分为左右两部分,分别进行递归排序
- 排好序的两部分进行合并
- 合并过程
- 定义P1指针指向左部分最左边的值(最小值)
- 定义P2指针指向右部分最左边的值(最小值)
- 定义新数组,大小等于两部分的总大小
- 比较P1和P2指针指向的值,当arr[P1]<=arr[P2]时,将arr[P1]加到新数组中,否则加入arr[P2]
- 如果其中一部分的指针越界,那么将另一部分剩余元素加入新数组中
- 将新数组赋给赋给入参数组的所在部分
代码
public class MergeSort {
public static void process(int[] array,int L,int R){
if (L==R){ //base case
return;
}
//计算中点値
int mid = L + ((R-L)>>1);
//分别排好左边和右边,再合并
process(array,L,mid);
process(array,mid+1,R);
//合并左右两边,有序
merge(array,L,mid,R);
}
private static void merge(int[] array, int L, int mid, int R) {
//定义p1指针,指向左部分左边界
int p1 = L;
//定义p2指针,指向右部分左边界
int p2 = mid + 1;
//定义同样长度的数组,记录排序后的值
int[] arr = new int[R - L + 1];
int i = 0;
//判断p1,p2有没有越界
while (p1 <= mid && p2 <= R) {
//未越界则比较
arr[i++] = array[p1] <= array[p2] ? array[p1++] : array[p2++];
}
//两个while只会发生一个,因为只会有其中一个越界
//如果p1越界,则将p2后面的数都加入新数组
while (p2 <= R) {
arr[i++] = array[p2++];
}
//如果p2越界,则将p1后面的数都加入新数组
while (p1 <= mid) {
arr[i++] = array[p1++];
}
//将新数组赋给传入数组
for (int j = 0; j < arr.length; j++) {
array[L+j] = arr[j];
}
}
public static void main(String[] args) {
int[] array = new int[]{1,2,5,8,97,9,6,1};
process(array,0,array.length-1);
for (int a : array){
System.out.println(a);
}
}
}
复杂度分析
- 符合Master公式:T(N) = 2T(N/2) + O(N) Master公式详解
- a=2,b=2,d=1
- 时间复杂度为O(N^d * logN) = O(N*logN)
非递归方式
基本思想
- 合并过程
- 合并组的大小指数增长:1,2,4,8,16…
- 定义mergeSize
- 第1次mergeSize为1,即一组两个数合并
- 第2次mergeSize为2,即一组四个数合并
- mergeSize >= 数组长度, 停止
- 合并的方式同递归的合并
代码
public static void sort(int[] array){
//数组判空
if (array == null || array.length < 2){
return;
}
//确定mergeSize的大小 mergeSize为当前有序的左组长度
int mergeSize = 1; //初始时mergeSize为1
//获取数组长度,用作结束条件
int length = array.length;
while (mergeSize < length){
//定义第一个左组的左边界
int L = 0;
//各个左右组进行合并
while (L < length){
//寻找左组右边界
int LR = L + mergeSize - 1;
//判断左组右边界是否越界,如果越界则结束
if (LR >= length){
break;
}
//寻找其右组右边界
//判断数组右边界和LR+mergeSize的大小,若LR+mergeSize超出右边界,则右边界为整个数组的右边界
int R = Math.min(LR + mergeSize,length-1);
//merge
merge(array,L,LR,R);
//寻找下一个左组左边界
L = R + 1;
}
//防止越界(如果数组足够大,则mergeSize在达到一定规模(20亿)后,再*2会越界溢出,出险错误
if (mergeSize > length/2){
//如果mergeSize大于了一半的数组长度,那么下次*2后一定会大于length,即结束循环
//提前判断,防止越界
break;
}
//mergeSize增大(左移一位)
mergeSize <<= 1;
}
}
private static void merge(int[] array, int L, int mid, int R) {
//定义p1指针,指向左部分左边界
int p1 = L;
//定义p2指针,指向右部分左边界
int p2 = mid + 1;
//定义同样长度的数组,记录排序后的值
int[] arr = new int[R - L + 1];
int i = 0;
//判断p1,p2有没有越界
while (p1 <= mid && p2 <= R) {
//未越界则比较
arr[i++] = array[p1] <= array[p2] ? array[p1++] : array[p2++];
}
//两个while只会发生一个,因为只会有其中一个越界
//如果p1越界,则将p2后面的数都加入新数组
while (p2 <= R) {
arr[i++] = array[p2++];
}
//如果p2越界,则将p1后面的数都加入新数组
while (p1 <= mid) {
arr[i++] = array[p1++];
}
//将新数组赋给传入数组
for (int j = 0; j < arr.length; j++) {
array[L+j] = arr[j];
}
}
时间复杂度
外层的while循环执行了logN次,时间复杂度为O(logN)
内层的while循环时间复杂度为O(N)
所以非递归行为的时间复杂度为O(N*logN)