排序算法 - 归并排序

3 篇文章 0 订阅
3 篇文章 0 订阅
本文详细介绍了归并排序的两种实现方式:递归和非递归。递归方式通过将数组不断分成两半并进行合并来排序,非递归方式则通过逐步增加合并组的大小进行排序。两种方法的时间复杂度均为O(N*logN)。文章提供了完整的Java代码示例,并分析了复杂度。
摘要由CSDN通过智能技术生成

递归方式

基本思想

  • 将数组分为左右两部分,分别进行递归排序
  • 排好序的两部分进行合并
  • 合并过程
    • 定义P1指针指向左部分最左边的值(最小值)
    • 定义P2指针指向右部分最左边的值(最小值)
    • 定义新数组,大小等于两部分的总大小
    • 比较P1和P2指针指向的值,当arr[P1]<=arr[P2]时,将arr[P1]加到新数组中,否则加入arr[P2]
    • 如果其中一部分的指针越界,那么将另一部分剩余元素加入新数组中
    • 将新数组赋给赋给入参数组的所在部分

代码

public class MergeSort {

    public static void process(int[] array,int L,int R){
        if (L==R){ //base case
            return;
        }

        //计算中点値
        int mid = L + ((R-L)>>1);
        //分别排好左边和右边,再合并
        process(array,L,mid);
        process(array,mid+1,R);

        //合并左右两边,有序
        merge(array,L,mid,R);
    }

    private static void merge(int[] array, int L, int mid, int R) {
        //定义p1指针,指向左部分左边界
        int p1 = L;
        //定义p2指针,指向右部分左边界
        int p2 = mid + 1;

        //定义同样长度的数组,记录排序后的值
        int[] arr = new int[R - L + 1];

        int i = 0;
        //判断p1,p2有没有越界
        while (p1 <= mid && p2 <= R) {
            //未越界则比较
            arr[i++] = array[p1] <= array[p2] ? array[p1++] : array[p2++];
        }

        //两个while只会发生一个,因为只会有其中一个越界
        //如果p1越界,则将p2后面的数都加入新数组
        while (p2 <= R) {
            arr[i++] = array[p2++];
        }
        //如果p2越界,则将p1后面的数都加入新数组
        while (p1 <= mid) {
            arr[i++] = array[p1++];
        }

        //将新数组赋给传入数组
        for (int j = 0; j < arr.length; j++) {
            array[L+j] = arr[j];
        }
    }

    public static void main(String[] args) {
        int[] array = new int[]{1,2,5,8,97,9,6,1};
        process(array,0,array.length-1);

        for (int a : array){
            System.out.println(a);
        }
    }
}

复杂度分析

  • 符合Master公式:T(N) = 2T(N/2) + O(N) Master公式详解
  • a=2,b=2,d=1
  • 时间复杂度为O(N^d * logN) = O(N*logN)

非递归方式

基本思想

  • 合并过程
  • 合并组的大小指数增长:1,2,4,8,16…
  • 定义mergeSize
    • 第1次mergeSize为1,即一组两个数合并
    • 第2次mergeSize为2,即一组四个数合并
    • mergeSize >= 数组长度, 停止
  • 合并的方式同递归的合并

代码

public static void sort(int[] array){

    //数组判空
    if (array == null || array.length < 2){
        return;
    }

    //确定mergeSize的大小 mergeSize为当前有序的左组长度
    int mergeSize = 1; //初始时mergeSize为1

    //获取数组长度,用作结束条件
    int length = array.length;

    while (mergeSize < length){
        //定义第一个左组的左边界
        int L = 0;

        //各个左右组进行合并
        while (L < length){
            //寻找左组右边界
            int LR = L + mergeSize - 1;
            //判断左组右边界是否越界,如果越界则结束
            if (LR >= length){
                break;
            }
            //寻找其右组右边界
            //判断数组右边界和LR+mergeSize的大小,若LR+mergeSize超出右边界,则右边界为整个数组的右边界
            int R = Math.min(LR + mergeSize,length-1);

            //merge
            merge(array,L,LR,R);

            //寻找下一个左组左边界
            L = R + 1;
        }

        //防止越界(如果数组足够大,则mergeSize在达到一定规模(20亿)后,再*2会越界溢出,出险错误
        if (mergeSize > length/2){
            //如果mergeSize大于了一半的数组长度,那么下次*2后一定会大于length,即结束循环
            //提前判断,防止越界
            break;
        }

        //mergeSize增大(左移一位)
        mergeSize <<= 1;
    }
}

private static void merge(int[] array, int L, int mid, int R) {
     //定义p1指针,指向左部分左边界
     int p1 = L;
     //定义p2指针,指向右部分左边界
     int p2 = mid + 1;

     //定义同样长度的数组,记录排序后的值
     int[] arr = new int[R - L + 1];

     int i = 0;
     //判断p1,p2有没有越界
     while (p1 <= mid && p2 <= R) {
         //未越界则比较
         arr[i++] = array[p1] <= array[p2] ? array[p1++] : array[p2++];
     }

     //两个while只会发生一个,因为只会有其中一个越界
     //如果p1越界,则将p2后面的数都加入新数组
     while (p2 <= R) {
         arr[i++] = array[p2++];
     }
     //如果p2越界,则将p1后面的数都加入新数组
     while (p1 <= mid) {
         arr[i++] = array[p1++];
     }

     //将新数组赋给传入数组
     for (int j = 0; j < arr.length; j++) {
         array[L+j] = arr[j];
     }
 }

时间复杂度

外层的while循环执行了logN次,时间复杂度为O(logN)
内层的while循环时间复杂度为O(N)
所以非递归行为的时间复杂度为O(N*logN)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值