numpy1.19.5对应其他pkg版本

numpy和scipy,pandas,matplotlib,numba,scikit-learn之间的关系大致如下:

  • numpy是一个提供多维数组对象和相关操作的Python库,它是科学计算的基础²。
  • scipy是一个基于numpy的Python库,它提供了许多数学、科学和工程领域的函数和算法¹²。
  • pandas是一个基于numpy的Python库,它提供了高性能的数据结构和数据分析工具,特别是用于处理表格和时间序列数据²。
  • matplotlib是一个基于numpy的Python库,它提供了强大的数据可视化功能,可以绘制各种图形和图表²。
  • numba是一个基于numpy的Python库,它可以使用LLVM编译器将Python代码转换为机器码,从而提高数值计算的性能,并支持并行化和GPU加速³。
  • scikit-learn是一个基于numpy和scipy的Python库,它提供了一套统一的机器学习框架,包括分类、回归、聚类、降维、模型选择和预处理等功能¹。

总之,这些库都是为了实现不同方面的科学计算而设计的,它们之间有很强的依赖和协作关系。

numpy 1.19.5对应的scipy seaborn matplotlib pandas scikit-learn 的版本可能如下:

  • scipy: 1.6.0或更高¹
  • seaborn: 0.11.0或更高²
  • matplotlib: 3.3.4或更高¹
  • pandas: 1.2.0或更高²
  • scikit-learn: 1.0或更高³

请注意,这些版本可能不是唯一的兼容版本,也可能存在其他的依赖关系。您可以使用conda或pip来安装或更新这些包,并指定您需要的版本。例如:

conda install numpy=1.19.5 scipy=1.6.0 seaborn=0.11.0 matplotlib=3.3.4 pandas=1.2.0 scikit-learn=1.0

或者

pip install numpy==1.19.5 scipy==1.6.0 seaborn==0.11.0 matplotlib==3.3.4 pandas==1.2.0 scikit-learn==1.0

(1) Minimum version of dependencies policy - Matplotlib. https://matplotlib.org/stable/devel/min_dep_policy.html.
(2) pip - How to find (and install) the pandas version which is … https://stackoverflow.com/questions/69650991/how-to-find-and-install-the-pandas-version-which-is-compatible-with-numpy-1-19.
(3) scikit-learn · PyPI. https://pypi.org/project/scikit-learn/.

-f https://download.pytorch.org/whl/cu113/torch_stable.html -f https://data.dgl.ai/wheels/repo.html anyio==3.5.0 argon2-cffi==21.3.0 argon2-cffi-bindings==21.2.0 async-generator==1.10 attrs==21.4.0 Babel==2.9.1 backcall==0.2.0 bleach==4.1.0 cached-property==1.5.2 cairocffi==1.2.0 CairoSVG==2.5.2 certifi==2021.10.8 cffi==1.15.0 chainer==7.8.1 chainer-chemistry==0.7.1 charset-normalizer==2.0.11 contextvars==2.4 cssselect2==0.4.1 cycler==0.11.0 decorator==4.4.2 defusedxml==0.7.1 dgl-cu113==0.8.0 dglgo==0.0.1 einops==0.4.0 entrypoints==0.4 filelock==3.4.1 googledrivedownloader==0.4 h5py==3.1.0 idna==3.3 imageio==2.15.0 immutables==0.16 importlib-metadata==4.8.3 ipykernel==5.5.6 ipython==7.16.3 ipython-genutils==0.2.0 isodate==0.6.1 jedi==0.17.2 Jinja2==3.0.3 joblib==1.1.0 json5==0.9.6 jsonschema==3.2.0 jupyter-client==7.1.2 jupyter-core==4.9.1 jupyter-server==1.13.1 jupyterlab==3.2.8 jupyterlab-pygments==0.1.2 jupyterlab-server==2.10.3 kiwisolver==1.3.1 MarkupSafe==2.0.1 matplotlib==3.3.4 mistune==0.8.4 nbclassic==0.3.5 nbclient==0.5.9 nbconvert==6.0.7 nbformat==5.1.3 nest-asyncio==1.5.4 networkx==2.5.1 notebook==6.4.8 numpy==1.19.5 opencv-python==4.5.5.62 packaging==21.3 pandas==1.1.5 pandocfilters==1.5.0 parso==0.7.1 pbr==5.8.1 pexpect==4.8.0 pickleshare==0.7.5 Pillow==8.4.0 pkg_resources==0.0.0 prometheus-client==0.13.1 prompt-toolkit==3.0.26 protobuf==3.19.4 psutil==5.9.0 ptyprocess==0.7.0 pycparser==2.21 Pygments==2.11.2 pyparsing==3.0.7 pyrsistent==0.18.0 pysmiles==1.0.1 python-dateutil==2.8.2 pytz==2021.3 PyWavelets==1.1.1 PyYAML==6.0 pyzmq==22.3.0 rdflib==5.0.0 rdkit-pypi==2021.9.4 requests==2.27.1 scikit-image==0.17.2 scikit-learn==0.24.2 scipy==1.5.4 seaborn==0.11.2 Send2Trash==1.8.0 six==1.16.0 sklearn==0.0 sniffio==1.2.0 terminado==0.12.1 testpath==0.5.0 threadpoolctl==3.1.0 tifffile==2020.9.3 tinycss2==1.1.1 torch==1.10.2+cu113 tornado==6.1 tqdm==4.62.3 traitlets==4.3.3 typing==3.7.4.3 typing_extensions==4.0.1 urllib3==1.26.8 wcwidth==0.2.5 有哪些包需要我手动安装
03-19
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值