pytorch
蓝翔技校的码农
这个作者很懒,什么都没留下…
展开
-
pytorch的环境配置
https://blog.csdn.net/weixin_44791964/article/details/120668551原创 2022-02-04 01:17:27 · 1510 阅读 · 0 评论 -
在地图上绘制数据
链接: https://matplotlib.org/basemap/users/examples.html转载 2021-08-22 17:08:24 · 132 阅读 · 0 评论 -
python 箱线图 plt.boxplot() 参数详解
http://t.zoukankan.com/shanger-p-13041426.html转载 2021-08-15 22:56:11 · 1709 阅读 · 0 评论 -
ImportError: cannot import name ‘dedent‘ from ‘matplotlib.cbook‘
将from matplotlib.cbook import dedent改成from inspect import cleandoc as dedent原创 2021-08-15 17:54:12 · 4046 阅读 · 0 评论 -
下载飓风txt数据
https://ftp.emc.ncep.noaa.gov/gc_wmb/jpeng/tracker_2_CMC/原创 2021-08-06 22:42:17 · 151 阅读 · 0 评论 -
机器学习任务攻略
如果最优化函数失败了,原因是什么?原创 2021-08-01 21:18:57 · 281 阅读 · 0 评论 -
transformer和CNN
来源:https://zhuanlan.zhihu.com/p/330483336优点这一块分析的人很多,就不深究。可以直接计算每个词之间的相关性,不需要通过隐藏层传递可以并行计算,可以充分利用GPU资源缺点局部信息的获取不如RNN和CNN强位置信息编码存在问题在使用词向量的过程中,会做如下假设:对词向量做线性变换,其语义可以在很大程度上得以保留,也就是说词向量保存了词语的语言学信息(词性、语义)。然而,位置编码在语义空间中并不具有这种可变换性,它相当于人为设计的一种转载 2021-07-08 16:32:50 · 915 阅读 · 0 评论 -
nn.AvgPool2d()函数
X为输入图像的大小通过nn.AvgPool2d()函数输入和输出的特征层数目不变,特征图大小改变。nn.AvgPool2d(2,2)和nn.MaxPool2d(2, 2)一样是图像大小缩小为原来的一半。原创 2021-07-04 18:22:02 · 14356 阅读 · 2 评论 -
将原始数据集 随机分为训练集和测试集
链接: link.原创 2021-07-02 19:22:11 · 984 阅读 · 0 评论 -
Swin-Transformer分类源码
链接: link.转载 2021-06-27 22:14:08 · 613 阅读 · 0 评论 -
训练集、验证集、测试集的理解
来源:https://blog.csdn.net/cslg159357/article/details/105461443普通参数:优化算法所能更新的参数,如神经网络算法中的相邻两层权重和每层的偏置。超参数:优化算法无法更新的参数,如神经网络算法中的学习率、隐含层的数量及每层的节点数等。Ripley, B.D对三种属于的经典解释:训练集:用于学习所构建的分类器的普通参数验证集:用于更新所构建的分类器的超参数测试集:仅仅用于衡量所构建的分类器的性能(泛化误差)验证集的作用是更新超参数深转载 2021-04-27 11:33:08 · 204 阅读 · 0 评论 -
2021-04-25
annconda虚拟环境 使用Pythonconda env listactivate XXXXXXXpip install xxxxxx原创 2021-04-25 20:10:33 · 102 阅读 · 0 评论 -
pytorch卷积神经网络训练手写数据
下面展示卷积神经网络训练手写数据 代码。//CNNimport os# third-party libraryimport torchimport torch.nn as nnimport torch.utils.data as Dataimport torchvision # torchvision是独立于pytorch的关于图像操作的一些方便工具库import matplotlib.pyplot as plttorch.manual_seed(1) # reproducib原创 2021-04-11 10:17:21 · 193 阅读 · 0 评论 -
pytorch 神经网络的优化函数
下面展示优化函数的 使用代码。// optimizerimport torchimport torch.utils.data as Dataimport matplotlib.pyplot as plt#超参数LR = 0.01BATCH_SIZE = 32EPOCH = 12#生成伪数据x=torch.unsqueeze(torch.linspace(-1,1,1000),dim= 1) # x data (tensor) ,shape=(100,1)y = x.pow(2) +原创 2021-04-10 20:43:51 · 361 阅读 · 0 评论 -
pytorch神经网络批数据训练
下面展示批数据训练 代码。import torchimport torch.utils.data as DataBATCH_SIZE=5x=torch.linspace(1, 10, 10)y=torch.linspace(10, 1, 10)torch_dataset=Data.TensorDataset(x,y)loader=Data.DataLoader( dataset=torch_dataset , batch_size=BATCH_SIZE , shuff原创 2021-04-10 19:01:58 · 410 阅读 · 0 评论 -
pytorch神经网络的保存和提取
下面展示神经网络保存提取 代码。// save and restoreimport torchimport matplotlib.pyplot as pltx = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)原创 2021-04-10 16:50:28 · 274 阅读 · 0 评论 -
pytorch 神经网络的快速搭建
下面神经网络快速搭建的 代码。method1与method2效果相同import torch# 先生成数据,x0和X1实际上是二维的数据,有着每一个点坐标(x,y)的信息,y0,y1是两种分类[0,1]n_data=torch.ones(100,2) #100行2列tensorx0=torch.normal(2*n_data ,1) #100个右上角的坐标数据y0=torch.zeros(100) #标签为0的100个数据x1=torch.normal(-2*n_data ,1)原创 2021-04-10 16:11:28 · 84 阅读 · 0 评论 -
pytorch 神经网络简单分类操作
下面展示简单分类操作 代码。//classificationimport torchimport matplotlib.pyplot as pltn_data=torch.ones(100,2)x0=torch.normal(2*n_data ,1)y0=torch.zeros(100) #标签为0的数据x1=torch.normal(-2*n_data ,1)y1=torch.ones(100) #标签为1的数据x=torch.cat((x0,x1),0).type(tor原创 2021-04-10 15:38:21 · 237 阅读 · 0 评论 -
pytorch 神经网络简单回归操作
下面展示一些神经网络回归的 代码。// regressionimport torchimport torch.nn.functional as Fimport matplotlib.pyplot as pltx=torch.unsqueeze(torch.linspace(-1,1,200),dim= 1) # x data (tensor) ,shape=(100,1)y = x.pow(2) +0.2*torch.rand(x.size()) #y=x的平方#定义网络结构class原创 2021-04-10 09:58:45 · 340 阅读 · 0 评论 -
pytorch激励函数的简单学习
pytor激励函数的学习下面展示激励函数使用与显示的代码。//显示四种激励函数import torchimport torch.nn.functional as Fimport matplotlib.pyplot as plt#fake datax=torch.linspace(-5,5,200) #x data (tensor),shape=(100,1)# x=Variable(x) tensor和variable合并了x_np=x.data.numpy()y_relu=tor原创 2021-04-09 23:20:26 · 112 阅读 · 0 评论