下面展示简单分类操作 代码
。
#//classification
import torch
import matplotlib.pyplot as plt
###############
#torch.normal(means, std, out=None)从离散正态分布中抽取一个随机数
#参数:
#means(Tensor) – 均值
#std(Tensor) – 标准差
#out(Tensor) – 可选的输出张量
###############
# 先生成数据,x0和X1实际上是二维的数据,有着每一个点坐标(x,y)的信息,y0,y1是两种分类[0,1]
n_data=torch.ones(100,2) #100行2列tensor
x0=torch.normal(2*n_data ,1) #100个右上角的坐标数据
y0=torch.zeros(100) #标签为0的100个数据
x1=torch.normal(-2*n_data ,1) #100个左下角的坐标数据
y1=torch.ones(100) #标签为1的100个数据
x=torch.cat((x0,x1),0).type(torch.FloatTensor) #x0和X1两个坐标数据合并
y=torch.cat((y0,y1), ).type(torch.LongTensor) #y0和y1两个坐标数据合并
# plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
# plt.show()
#定义网络
class Net(torch.nn.Module):
def __init__(self,n_features,n_hidden,n_output):
super(Net,self ).__init__()
self.hidden= torch.nn.Linear(n_features,n_hidden)
self.predict=torch.nn.Linear(n_hidden,n_output )
def forward(self,x):
x=torch.relu(self.hidden(x) )
x=self.predict(x)
return x
net=Net(2,10,2)
# print(net)
plt.ion()
optimizer=torch.optim.SGD(net.parameters() ,lr=0.02 )
loss_function=torch.nn.CrossEntropyLoss()
for t in range(200):
out =net(x)# 喂给 net 训练数据 x, 输出预测值
loss =loss_function(out,y)# 计算两者的误差,一定要是输出在前,标签在后 (1. nn output, 2. target)
optimizer.zero_grad()# 清空上一步的残余更新参数值
loss.backward()# 误差反向传播, 计算参数更新值
optimizer.step() # 将参数更新值施加到 net 的 parameters 上
if t % 2 ==0:
plt.cla()
prediction = torch.max(out, 1)[1]
pred_y = prediction.data.numpy()
target_y = y.data.numpy()
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
## c是指定颜色,可以是一个二维数组,可以是一种颜色,s是大小,
accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size)# 算正确率
plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1)
plt.ioff()
plt.show()
结果