pytorch 神经网络简单分类操作

下面展示简单分类操作 代码

#//classification
import torch
import matplotlib.pyplot as plt
###############
#torch.normal(means, std, out=None)从离散正态分布中抽取一个随机数
#参数:
#means(Tensor) – 均值
#std(Tensor) – 标准差
#out(Tensor) – 可选的输出张量
###############
# 先生成数据,x0和X1实际上是二维的数据,有着每一个点坐标(x,y)的信息,y0,y1是两种分类[0,1]
n_data=torch.ones(100,2)  #1002列tensor
x0=torch.normal(2*n_data ,1)   #100个右上角的坐标数据
y0=torch.zeros(100)  #标签为0100个数据
x1=torch.normal(-2*n_data ,1)   #100个左下角的坐标数据
y1=torch.ones(100)    #标签为1100个数据
x=torch.cat((x0,x1),0).type(torch.FloatTensor)  #x0和X1两个坐标数据合并
y=torch.cat((y0,y1), ).type(torch.LongTensor)  #y0和y1两个坐标数据合并
# plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
# plt.show()

#定义网络
class Net(torch.nn.Module):
    def __init__(self,n_features,n_hidden,n_output):
        super(Net,self ).__init__()
        self.hidden= torch.nn.Linear(n_features,n_hidden)
        self.predict=torch.nn.Linear(n_hidden,n_output )
    def forward(self,x):
            x=torch.relu(self.hidden(x) )
            x=self.predict(x)
            return x

net=Net(2,10,2)
# print(net)
plt.ion()
optimizer=torch.optim.SGD(net.parameters() ,lr=0.02 )
loss_function=torch.nn.CrossEntropyLoss()

for t in range(200):
    out =net(x)# 喂给 net 训练数据 x, 输出预测值
    loss =loss_function(out,y)# 计算两者的误差,一定要是输出在前,标签在后 (1. nn output, 2. target)
    optimizer.zero_grad()# 清空上一步的残余更新参数值
    loss.backward()# 误差反向传播, 计算参数更新值
    optimizer.step() # 将参数更新值施加到 net 的 parameters 上
    if t % 2 ==0:
        plt.cla()
        prediction = torch.max(out, 1)[1]
        pred_y = prediction.data.numpy()
        target_y = y.data.numpy()
        plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
        ## c是指定颜色,可以是一个二维数组,可以是一种颜色,s是大小,
        accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size)# 算正确率
        plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
        plt.pause(0.1)

plt.ioff()
plt.show()

结果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值