《自学习》keras_multi_head的使用方法

本文介绍如何在Keras中使用`keras_multi_head`库实现多头注意力机制,强调了Flatten函数的作用,以及Conv1D的重要参数。内容包括多头注意力输入输出的维度要求,并通过分析源码确认与《注意力就是你所需要的》论文中的方法一致。文中还提到了理解多头注意力机制的相关资源。
摘要由CSDN通过智能技术生成

《自学习》keras_multi_head的使用方法


import keras
from keras_multi_head import MultiHead


model = keras.models.Sequential()
model.add(keras.layers.Embedding(input_dim=100, output_dim=20, name='Embedding'))
model.add(MultiHead(keras.layers.LSTM(units=32), layer_num=5, name='Multi-LSTMs'))
model.add(keras.layers.Flatten(name='Flatten'))
model.add(keras.layers.Dense(units=4, activation='softmax', name='Dense'))
model.build()
model.summary()

//生成结果如下
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
Embedding (Embedding)        (None, None, 20)          2000      
_________________________________________________________________
Multi-LSTMs (MultiHead)      (None, 3
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值