《Multi-Head Multi-Loss Model Calibration》

本文提出了一种简化版的模型集成,通过在神经网络的末端使用多个头部并用不同的损失函数监督,以增强预测的多样性,从而实现模型校准。这种方法避免了深度集成的高计算成本,同时在两个数据集上展现出与DeepEnsembles相当的校准性能。实验表明,多头多损失分类器能提供良好的校准,优于其他近期的校准技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Multi-Head Multi-Loss Model Calibration》

摘要

  • 提供有意义的不确定性估计对于在临床实践中成功部署机器学习模型至关重要。
  • 不确定性量化的一个核心方面是模型返回与模型正确的实际概率一致的预测的能力,也称为模型校准。
  • 没有一种技术可以与简单但昂贵的训练深度神经网络集成的方法相匹配。
  • 本文介绍了一种简化的集成形式,绕过了昂贵的深度集成的训练和推断,保持了其校准能力。
  • 用一组头部来代替网络末端的常见线性分类器,这些头部被不同的损失函数监督,以加强其预测的多样性。
  • 每个头都被训练成最小化加权交叉熵损失,但不同分支之间的权重是不同的。
  • 所得到的平均预测可以在不牺牲准确性的情况下,在两个具有挑战性的数据集中实现出色的校准,用于组织病理学和内窥镜图像分类。
  • 实验表明,MultiHead Multi-Loss分类器本质上是校准良好的,优于其他近期校准技术,甚至挑战Deep Ensembles的性能。

引言

在训练有监督的计算机视觉模型时,我们通常专注于提高它们的预测性能,但对于安全关键任务来说,同样重要的是它们对自己的预测表达有意义的不确定性的能力。在机器学习的背景下,我们经常区分两种类型的不确定性:认知的和任意的。简单地说,认知不确定性来自于模型对它被训练来解决的问题的不完全知识,而任意不确定性描述了对数据的无知用于学习和预测。

例如,如果一个分类器已经学会了在结肠组织病理学上预测癌组织的存在,并且它的任务是对乳房活检进行预测,它可能会显示出认知的不确定性,因为它从未针对这个问题进行过训练。尽管如此,如果我们向模型询问具有模糊视觉内容的结肠活检,即难以诊断的图像,那么它可以表达任意的不确定性,因为它可能不知道如何解决问题,但模糊性来自于数据。

认识性和任意性之间的区别通常是模糊的,因为其中一个的存在并不意味着另一个的不存在。此外,在强烈的认知不确定性下,任意不确定性估计可能变得不可靠

产生良好的不确定性估计是有用的,例如,识别模型预测可信度低的测试样本,应该对其进行审查。

报告不确定性估计的一种直接方法是将模型的输出(其软最大概率的最大值)解释为其预测置信度。当这个置信度与实际精度一致时,我们说模型被校准。

训练校准(Training-Time Calibration)

流行的训练时间方法包括通过正则化来降低预测熵,例如标签平滑或MixUp,或平滑预测的损失函数。这些技术通常依赖于正确调优超参数,控制辨别能力和置信度之间的权衡,并且可以以降低预测性能为代价轻松实现更好的校准。或基于空间变化和边缘的标签平滑,它们扩展和改进了用于生物医学图像分割任务的标签平滑

事后校准(Post-Hoc Calibration)

提出了诸如Temperature Scaling及其变体等事后校准技术,通过在模型的输出概率上应用简单的单调映射来纠正过度或不自信的预测。它们最大的缺点是依赖于使用验证数据学习映射时隐含的假设:这些方法难以推广到未见数据。

除此之外,这些技术可以与训练时方法相结合,并带来复合性能改进。

模型集成(Model Ensembling)

改进校准的第三种方法是聚合几个模型的输出,这些模型事先经过训练,因此它们的预测具有一定的多样性。在深度学习中,模型集成被认为是产生有意义的不确定性的最成功的方法估计。深度集成的一个明显弱点是需要训练,然后为推理目的保留一组模型,这导致了对于较大的体系结构来说相当大的计算开销。在医学图像计算中应用集合的例子包括。

在这项工作中,我们通过不同损失函数训练的多头模型来实现模型校准。从这个意义上说,我们的方法最接近于最近在多输出架构上的一些工作,其中多分支CNN在组织病理学数据上进行训练,通过通过损失最小的分支反向传播梯度来强制不同头部的专门化。

与我们的方法相比,确保正确的梯度流以避免死头需要特别的计算技巧;此外,没有对域内数据和任意不确定性的模型校准进行分析,主要集中在异常检测上。

主要贡献
  • 利用多损失分集来实现比其他基于学习的方法更大的置信度校准,
  • 避免使用训练数据来学习后处理映射,就像大多数事后校准方法所做的那样
  • 避免深度集成的计算开销

校准多头模型

多头集成差异(Multi-Head Ensemble Diversity)

考虑一个k类分类问题,一个神经网络Uθ取一个图像x并将其映射到一个表示Uθ(x)∈RN上,它被f线性变换成一个logits向量z = f(Uθ(x))∈RK。然后通过软最大运算p = σ(z)将其映射为概率p∈[0,1]K的向量。

如果x的标签是y∈{1,…, K},我们可以用交叉熵损失来测量与预测p相关的误差。

将f替换为M个不同的分支f 1,…, f M,它们中的每一个仍然取相同的输入,但将其映射到不同的logits。

然后对得到的概率向量pm = σ(zm)求平均,得到最终的预测pµ= (1/M) p M pm。我们感兴趣的是反向传播损耗,以找到每个分支的梯度。

性质1:对于图1中的m头分类器,fm的横移损失对zm的导数为

在这里插入图片描述

可以看到分支m的梯度将缩放,这取决于质量pmy被fm放置在正确类别上的概率是多少,相对于所有正面放置的总质量。换句话说,如果每个头都学会了对特定样本产生类似的预测(不一定正确),那么这个网络的优化过程将导致所有人都得到相同的更新。因此,构成网络输出pµ的预测的多样性将被破坏

多头多损失模型

在训练过程中,在多头模型中获得更多样化的梯度更新的一种方法是用不同的损失函数来监督每个头部。

应用加权交叉熵损失,为每个头分配了不同的权重向量,以这样的方式,不同的损失函数Lωm-CE将监督每个分支fm的中间输出,类似于深度监督策略,但强制多样性。完整模型的总损失为作用于平均预测的单头损失和总损失之和:



式中,p = (p1,…, pM)是一个数组,是网络做出的所有预测。

分支fm处的多头损失梯度为:

在所有分支中拥有相同的权重向量并不能打破所有正面做出类似预测的情况下的对称性。

对于任意两个给定的头fmi, fmj,有ωmi = ωmj和pmi≈pmj,即pm≈pµ,任意m,两个头的梯度的范数之差为:

假设多头模型的分支比我们问题中的类的数量少,即M≤K,否则我们需要在同一类别中有不同的分支。

随机选择的N/K个类别的子集与分支fm相关联,这些类别的权重为ω= K。ω中其余类别的权重为ω = 1/K。

在一个有4个类别和2个分支的问题中,我们可以有ω1 =[2,1 /2, 2,1 /2]和ω2 =[1/2, 2,1 /2, 2]。如果N不能被K整除,则提醒类别将被分配给随机分支进行专门化。

模型评估标准

在测量模型校准时,标准方法依赖于观察不同置信度波段b下的测试集精度。例如,采用所有预测置信度约为c = 0.8的测试样本,一个校准良好的分类器将在该测试子集中显示约80%的精度。这可以通过预期校准误差(ECE)来量化,由:


在实践中,就实际可用性而言,ECE本身并不是一个很好的衡量标准,可以拥有一个完美的ECE校准模型,但没有预测能力。

利用负对数似然(NLL)和标准精度,与ECE相反,即使是校准不良的模型也可以很高。最后,将ECE、NLL和准确性综合排名时的平均排名作为总结指标。

实验结果

数据集
  • the Chaoyang dataset
  • Kvasir
性能分析

训练了三种不同的多头分类器:

  • 2-head模型,其中每个头优化为标准(未加权)CE,称为2HSL(2头-单损失)
  • 2head模型,但每个磁头最小化不同的CE损失,我们称此模型为2HML (2 Heads-Multi Loss))
  • 将正面的数量增加到4个,我们将这个模型称为4HML。

为了进行比较,包括一个标准的无损耗单头分类器(SL1H),加上使用标签平滑(LS)、基于边缘的标签平滑(MbLS)、MixUp和使用DCA损失训练的模型。还展示了Deep Ensembles (D-Ens)的性能。

在这里插入图片描述

实验比较简单,不展开说明

总结

性能分析

训练了三种不同的多头分类器:

  • 2-head模型,其中每个头优化为标准(未加权)CE,称为2HSL(2头-单损失)
  • 2head模型,但每个磁头最小化不同的CE损失,我们称此模型为2HML (2 Heads-Multi Loss))
  • 将正面的数量增加到4个,我们将这个模型称为4HML。

为了进行比较,包括一个标准的无损耗单头分类器(SL1H),加上使用标签平滑(LS)、基于边缘的标签平滑(MbLS)、MixUp和使用DCA损失训练的模型。还展示了Deep Ensembles (D-Ens)的性能。

[外链图片转存中…(img-fmL3aeya-1678070054916)]

实验比较简单,不展开说明

总结

多头多损失网络是具有增强校准的分类器,与单头网络相比,预测性能没有下降。这是通过同时优化几个输出分支来实现的,每个分支最小化不同加权的交叉熵损失。权重是互补的,确保每个分支在专攻原始数据类别的子集时得到奖励。

<think>好的,我现在要处理用户关于Ford Multi-AV Seasonal Dataset的查询。首先,用户想了解如何下载这个数据集、使用说明以及数据结构。我需要结合提供的引用内容来回答。 根据引用[2],Ford Multi-AV Seasonal Dataset的项目地址是https://gitcode.com/gh_mirrors/avd/AVData。所以下载方式应该包括访问这个仓库,可能里面有文档或下载链接。需要提醒用户可能需要git clone或者直接下载压缩包。 使用说明方面,通常开源项目会有README文件,用户需要查看安装步骤、依赖项以及数据预处理的方法。可能还包含示例代码,比如Python脚本,用来加载或处理数据。引用[2]提到的常见问题解决方案可能也在这个仓库里,用户遇到问题可以查阅。 数据结构部分,自动驾驶数据集通常包含传感器数据(如摄像头、LiDAR)、标注文件(如物体检测、语义分割)、时间戳和校准文件。引用[1]中提到Ford Multi-AV Seasonal Dataset是用于多车协同和复杂天气条件的,所以可能包含不同季节的数据,标注信息可能更丰富,比如天气、光照变化等。需要详细说明每个文件夹的作用,比如raw_data存放原始传感器数据,annotations是标注,calibration是校准参数。 还需要考虑用户可能需要的其他信息,比如数据集大小、格式(如ROS bag文件、图像序列)、标注工具等。同时,根据引用[3],用户可能需要访问Academic Torrents或其他计算机视觉数据集索引,但当前问题主要围绕Ford的数据集,所以重点在引用[2]的项目地址。 最后,生成相关问题时要围绕数据集的使用、结构、应用场景和挑战,比如下载问题、处理多传感器数据的方法、季节变化对算法的影响等。</think>### Ford Multi-AV Seasonal Dataset 相关资料说明 #### 1. **数据集下载** - **官方渠道**:Ford Multi-AV Seasonal Dataset 可通过其开源项目地址获取,项目托管于 GitCode 平台[^2]。 **步骤**: 1. 访问项目主页:<https://gitcode.com/gh_mirrors/avd/AVData> 2. 通过 `git clone` 克隆仓库,或直接下载压缩包。 3. 数据集可能需注册或申请权限,需仔细阅读仓库的 `README` 文件。 #### 2. **使用说明** - **依赖项**: 数据通常以传感器原始格式(如 ROS bag 文件)存储,需安装 ROS(机器人操作系统)或专用解析工具[^2]。 - **预处理**: 仓库中可能包含示例脚本(Python/C++),用于解析传感器数据(如 LiDAR 点云、摄像头图像)和标注文件。 - **标注类型**: 包括目标检测框(车辆、行人)、语义分割掩码、时间同步信息等,需参考官方文档的标注格式说明。 #### 3. **数据结构** 数据集通常包含以下目录: - **`raw_data/`**:原始传感器数据(LiDAR、摄像头、雷达等),按时间戳组织。 例如: ```text raw_data/ ├── 2020-01-01-10-00-00.bag # ROS bag 文件 ├── camera/ # 图像序列(JPEG/PNG) └── lidar/ # 点云数据(.pcd 或 .bin) ``` - **`annotations/`**:标注文件(JSON/CSV 格式),包含目标位置、类别、轨迹等。 - **`calibration/`**:传感器标定参数(内参、外参),用于多传感器融合。 - **`metadata/`**:天气、光照、季节标签(如冬季雪天、夏季晴天)[^1]。 #### 4. **典型应用场景** - 多车协同感知算法验证 - 复杂天气条件下的自动驾驶鲁棒性测试 - 长期场景理解(季节变化对感知的影响) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值