在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
…#
…#.
.#…
#…
-1 -1
Sample Output
2
1
在做这个题目的时候曾经以为 遍历每种方法便可以通过,
for(int i=0;i<n;i++)
{
if(a[x][i]=='#'&&b[i]==0)
{
b[i]=1;
dfs(x+1,k+1);
b[i]=0;
}
}
dfs(x+1,k);
}
这一部分的代码一开始写成了
for(int i=0;i<n;i++)
{
if(a[x][i]=='#'&&b[i]==0)
{
b[i]=1;
dfs(x+1,k+1);
b[i]=0;
}
}
后加for循环。从每个顶点开始,
这个题目还可能存在 假设5行 4个 可能存在的是1 2 4 5 空下了3
空中间的情况,当所有连续的情况走完的时候,便开始了空余情况的执行。
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
char a[9][9];
bool b[9];
int ans=0;
int m,n;
void dfs(int x,int k)
{
if(x>n)
return ;
if(k==m)
{
ans++;
return ;
}
for(int i=0;i<n;i++)
{
if(a[x][i]=='#'&&b[i]==0)
{
b[i]=1;
dfs(x+1,k+1);
b[i]=0;
}
}
dfs(x+1,k);#
}
int main()
{
while(cin>>n>>m)
{
memset(b,0,sizeof(b));
ans=0;
if(n==-1&&m==-1)
break;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cin>>a[i][j];
dfs(0,0);
printf("%d\n",ans);
}
}