🌈交叉熵损失函数原理详解
⚡最近面临找工作,被面试官问得体无完肤。踏入机器学习领域时间较短,此类基本的问题虽然在实际工作和代码开发中不曾深入,但是对于应对面试和后续的一些复杂模型的学习是必不可少的。
⚡尤其是在代码中经常看见交叉熵损失函数(CrossEntropy Loss)
,只知道它是分类问题中经常使用的一种损失函数,对于其内部的原理总是很呆萌,而且一般使用交叉熵作为损失函数时,输出层会接一个softmax
函数或者sigmoid
,其中的原因实际并不复杂,但便于日后回忆,以此文进行总结,以便自己和小伙伴们以后翻阅。
❤️ 信息论
先不急,因为交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起(很容易理解)。
1️⃣ 信息量
首先是信息量。假设我们听到了两件事,分别如下:
事件A:巴西队进入了2018世界杯决赛圈。
事件B:中国队进入了2018世界杯决赛圈。
仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。所以当越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。那么信息量应该和事件发生的概率有关。
假设X
是一个离散型随机变量,其取值集合为
χ
\chi
χ,概率分布函数
p
(
x
)
=
P
r
(
X
=
x
)
,
x
∈
χ
p(x) =Pr(X=x),x\in\chi
p(x)=Pr(X=x),x∈χ,则定义事件
X
=
x
0
X=x_0
X=x0的信息量为:
I
(
x
0
)
=
−
l
o
g
(
p
(
x
0
)
)
I(x_0)=-log(p(x_0))
I(x0)=−log(p(x0))
由于是概率所以
p
(
x
0
)
p(x_0)
p(x0)的取值范围是
[
0
,
1
]
[0,1]
[0,1],绘制为图形如下:
可见该函数符合我们对信息量的直觉,概率越小,信息量越大。
2️⃣ 熵
考虑另一个问题,对于某个事件,有
n
n
n种可能性,每一种可能性都有一个概率
p
(
x
i
)
p(x_i)
p(xi)。这样就可以计算出某一种可能性的信息量。
Eg:
假设你拿出了你的电脑,按下开关,会有三种可能性,下表列出了每一种可能的概率及其对应的信息量:
序号 | 事件 | 概率p | 信息量 |
---|---|---|---|
A | 电脑正常开机 | 0.7 | − l o g ( p ( A ) ) = 0.36 -log(p(A))=0.36 −log(p(A))=0.36 |
B | 电脑无法开机 | 0.2 | − l o g ( p ( A ) ) = 1.61 -log(p(A))=1.61 −log(p(A))=1.61 |
C | 电脑爆炸了 | 0.1 | − l o g ( p ( A ) ) = 2.30 -log(p(A))=2.30 −log(p(A))=2.30 |
注:文中的对数均为自然对数 l n ( ) ln() ln()
我们现在有了信息量的定义,而熵用来表示所有信息量的期望,即:
H
(
X
)
=
−
∑
i
=
1
n
p
(
x
i
)
l
o
g
(
p
(
x
i
)
)
H(X)=-\sum_{i=1}^np(x_i)log(p(x_i))
H(X)=−i=1∑np(xi)log(p(xi))
其中n
代表所有的n种可能性,所以上面的问题结果就是
H
(
X
)
=
−
[
p
(
A
)
l
o
g
(
p
(
A
)
)
+
p
(
B
)
l
o
g
(
p
(
B
)
)
+
p
(
C
)
l
o
g
(
p
(
C
)
)
]
=
0.7
∗
0.36
+
0.2
∗
1.61
+
0.1
∗
2.30
=
0.804
H(X)=-[p(A)log(p(A))+p(B)log(p(B))+p(C)log(p(C))]\\ =0.7*0.36+0.2*1.61+0.1*2.30\\ =0.804
H(X)=−[p(A)log(p(A))+p(B)log(p(B))+p(C)log(p(C))]=0.7∗0.36+0.2∗1.61+0.1∗2.30=0.804
然而有一类比较特殊的问题,比如投掷硬币只有两种可能,字朝上或花朝上。买彩票只有两种可能,中奖或不中奖。我们称之为0-1分布问题(二项分布的特例),对于这类问题,熵的计算方法可以简化为如下算式:
H
(
X
)
=
−
∑
i
=
1
n
p
(
x
i
)
l
o
g
(
p
(
x
i
)
)
=
−
p
(
x
)
l
o
g
(
p
(
x
)
)
−
(
1
−
p
(
x
)
)
l
o
g
(
1
−
p
(
x
)
)
H(X)=-\sum_{i=1}^np(x_i)log(p(x_i))\\=-p(x)log(p(x))-(1-p(x))log(1-p(x))
H(X)=−i=1∑np(xi)log(p(xi))=−p(x)log(p(x))−(1−p(x))log(1−p(x))
3️⃣ 相对熵(KL散度)
相对熵又称KL散度,如果我们对于同一个随机变量x
有两个单独的概率分布 P(x)
和 Q(x)
,我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)
来衡量这两个分布的差异
即如果用P来描述目标问题,而不是用Q来描述目标问题,得到的信息增量。
在机器学习中,P往往用来表示样本的真实分布,比如[1,0,0]
表示当前样本属于第一类。Q用来表示模型所预测的分布,比如[0.7,0.2,0.1]
直观的理解就是如果用P来描述样本,那么就非常完美。而用Q来描述样本,虽然可以大致描述,但是不是那么的完美,信息量不足,需要额外的一些“信息增量”才能达到和P一样完美的描述。如果我们的Q通过反复训练,也能完美的描述样本,那么就不再需要额外的“信息增量”,Q等价于P。
KL散度的计算公式:
D
K
L
(
p
∣
∣
q
)
=
∑
i
=
1
n
p
(
x
i
)
l
o
g
(
p
(
x
i
)
q
(
x
i
)
)
(
3.1
)
D_{KL}(p||q)=\sum_{i=1}^np(x_i)log\left(\frac{p(x_i)}{q(x_i)}\right)\quad(3.1)
DKL(p∣∣q)=i=1∑np(xi)log(q(xi)p(xi))(3.1)
n
n
n为事件的所有可能性。
D
K
L
D_{KL}
DKL的值越小,表示
q
q
q分布和
p
p
p分布越接近
4️⃣ 交叉熵
对式3.1变形可以得到:
D
K
L
(
p
∣
∣
q
)
=
∑
i
=
1
n
p
(
x
i
)
l
o
g
(
p
(
x
i
)
)
−
∑
i
=
1
n
p
(
x
i
)
l
o
g
(
q
(
x
i
)
)
=
−
H
(
p
(
x
)
)
+
[
−
∑
i
=
1
n
p
(
x
i
)
l
o
g
(
q
(
x
i
)
)
]
D_{KL}(p||q)=\sum_{i=1}^np(x_i)log(p(x_i))-\sum_{i=1}^np(x_i)log(q(x_i))\\=-H(p(x))+[-\sum_{i=1}^np(x_i)log(q(x_i))]
DKL(p∣∣q)=i=1∑np(xi)log(p(xi))−i=1∑np(xi)log(q(xi))=−H(p(x))+[−i=1∑np(xi)log(q(xi))]
等式的前一部分恰巧就是
p
p
p的熵,等式的后一部分,就是交叉熵:
H
(
p
,
q
)
=
−
∑
i
=
1
n
p
(
x
i
)
l
o
g
(
q
(
x
i
)
)
H(p,q)=-\sum_{i=1}^np(x_i)log(q(x_i))
H(p,q)=−i=1∑np(xi)log(q(xi))
在机器学习中,我们需要评估label和predicts之间的差距,使用KL散度刚刚好,即
D
K
L
(
y
∣
∣
y
^
)
D_{KL}(y||\hat{y})
DKL(y∣∣y^),由于KL散度中的前一部分
−
H
(
y
)
−H(y)
−H(y)不变,故在优化过程中,只需要关注交叉熵就可以了。所以一般在机器学习中直接用用交叉熵做loss,评估模型。
Ⓜ️机器学习中交叉熵的应用
1️⃣ 为什么要用交叉熵做loss函数?
在线性回归问题中,常常使用MSE (Mean Squared Error)
作为loss函数,比如:
l
o
s
s
=
1
2
m
∑
i
=
1
n
(
y
i
−
y
i
^
)
2
loss=\frac{1}{2m}\sum_{i=1}^n(y_i-\hat{y_i})^2
loss=2m1i=1∑n(yi−yi^)2
这里的m表示m个样本的,loss为m个样本的loss均值。
MSE在线性回归问题中比较好用,那么在逻辑分类问题中还是如此么?
2️⃣ 交叉熵在单分类问题中的使用
这里的单类别是指,每一张图像样本只能有一个类别,比如只能是狗或只能是猫。
交叉熵在单分类问题上基本是标配的方法
l
o
s
s
=
−
∑
i
=
1
n
y
i
l
o
g
(
y
i
)
^
(
2.1
)
loss=-\sum_{i=1}^ny_ilog(\hat{y_i)}\quad(2.1)
loss=−i=1∑nyilog(yi)^(2.1)
上式为一张样本的loss计算方法。式2.1中n代表着n种类别。
举例说明,比如有如下样本
对应的标签和预测值
* | 猫 | 青蛙 | 狗 |
---|---|---|---|
Label | 0 | 1 | 0 |
Prediction | 0.3 | 0.6 | 0.1 |
那么
l
o
s
s
=
−
(
0
∗
l
o
g
(
0.3
)
+
1
∗
l
o
g
(
0.6
)
+
0
∗
l
o
g
(
0.1
)
=
−
l
o
g
(
0.6
)
loss=-(0*log(0.3)+1*log(0.6)+0*log(0.1)=-log(0.6)
loss=−(0∗log(0.3)+1∗log(0.6)+0∗log(0.1)=−log(0.6)
对应一个batch的loss就是:
l
o
s
s
=
−
1
m
∑
j
=
1
m
∑
i
=
1
n
y
i
j
l
o
g
(
y
i
j
^
)
loss = -\frac{1}{m}\sum_{j=1}^m\sum_{i=1}^ny_{ij}log(\hat{y_{ij}})
loss=−m1j=1∑mi=1∑nyijlog(yij^)
m为当前batch的样本数
3️⃣ 交叉熵在多分类问题中的使用
这里的多类别是指,每一张图像样本可以有多个类别,比如同时包含一只猫和一只狗
和单分类问题的标签不同,多分类的标签是n-hot
。
比如下面这张样本图,即有猫,又有狗,所以是一个多分类问题
对应的标签和预测值
* | 青蛙 | 猫 | 狗 |
---|---|---|---|
Label | 0 | 1 | 1 |
Prediction | 0.1 | 0.7 | 0.8 |
值得注意的是,这里的Prediction
不再是通过softmax
计算的了,这里采用的是sigmoid
。将每一个节点的输出归一化到[0,1]
之间。所有Prediction
值的和也不再为1。换句话说,就是每一个Label
都是独立分布的,相互之间没有影响。所以交叉熵在这里是单独对每一个节点进行计算,每一个节点只有两种可能值,所以是一个二项分布。前面说过对于二项分布这种特殊的分布,熵的计算可以进行简化。
同样的,交叉熵的计算也可以简化,即
l
o
s
s
=
−
y
l
o
g
(
y
^
)
−
(
1
−
y
)
l
o
g
(
1
−
y
^
)
loss = -ylog(\hat{y})-(1-y)log(1-\hat{y})
loss=−ylog(y^)−(1−y)log(1−y^)
注意,上式只是针对一个节点的计算公式。这一点一定要和单分类loss区分开来。
例子中可以计算为:
l
o
s
s
蛙
=
−
0
∗
l
o
g
(
0.1
)
−
(
1
−
0
)
l
o
g
(
1
−
0.1
)
=
−
l
o
g
(
0.9
)
l
o
s
s
猫
=
−
1
∗
l
o
g
(
0.7
)
−
(
1
−
1
)
l
o
g
(
1
−
0.7
)
=
−
l
o
g
(
0.7
)
l
o
s
s
狗
=
−
1
∗
l
o
g
(
0.8
)
−
(
1
−
1
)
l
o
g
(
1
−
0.8
)
=
−
l
o
g
(
0.8
)
loss_{蛙} = -0*log(0.1)-(1-0)log(1-0.1)=-log(0.9)\\ loss_{猫} = -1*log(0.7)-(1-1)log(1-0.7)=-log(0.7)\\ loss_{狗} = -1*log(0.8)-(1-1)log(1-0.8)=-log(0.8)
loss蛙=−0∗log(0.1)−(1−0)log(1−0.1)=−log(0.9)loss猫=−1∗log(0.7)−(1−1)log(1−0.7)=−log(0.7)loss狗=−1∗log(0.8)−(1−1)log(1−0.8)=−log(0.8)
单张样本的loss即为
l
o
s
s
=
l
o
s
s
蛙
+
l
o
s
s
猫
+
l
o
s
s
狗
loss=loss_蛙+loss_猫+loss_狗
loss=loss蛙+loss猫+loss狗
每一个batch的loss就是:
l
o
s
s
=
∑
j
=
1
m
∑
i
=
1
n
−
y
i
j
l
o
g
(
y
i
j
^
)
−
(
1
−
y
i
j
)
l
o
g
(
1
−
y
i
j
^
)
loss = \sum_{j=1}^m \sum_{i=1}^n-y_{ij}log(\hat{y_{ij}})-(1-y_{ij})log(1-\hat{y_{ij}})
loss=j=1∑mi=1∑n−yijlog(yij^)−(1−yij)log(1−yij^)
式中m为当前batch中的样本量,n为类别数。
㊗️总结
我只是知识的搬运工,希望对你们多少有点用❤️
以上内容参考自链接:一文搞懂交叉熵在机器学习中的使用,透彻理解交叉熵背后的直觉