【面试官灵魂拷问1】:详细介绍交叉熵损失函数,一文透彻理解交叉熵在机器学习中的使用

⚡最近面临找工作,被面试官问得体无完肤。踏入机器学习领域时间较短,此类基本的问题虽然在实际工作和代码开发中不曾深入,但是对于应对面试和后续的一些复杂模型的学习是必不可少的。

⚡尤其是在代码中经常看见交叉熵损失函数(CrossEntropy Loss),只知道它是分类问题中经常使用的一种损失函数,对于其内部的原理总是很呆萌,而且一般使用交叉熵作为损失函数时,输出层会接一个softmax函数或者sigmoid,其中的原因实际并不复杂,但便于日后回忆,以此文进行总结,以便自己和小伙伴们以后翻阅。

❤️ 信息论

先不急,因为交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起(很容易理解)。

1️⃣ 信息量

首先是信息量。假设我们听到了两件事,分别如下:
事件A:巴西队进入了2018世界杯决赛圈。
事件B:中国队进入了2018世界杯决赛圈。
仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。所以当越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。那么信息量应该和事件发生的概率有关。

假设X是一个离散型随机变量,其取值集合为 χ \chi χ,概率分布函数 p ( x ) = P r ( X = x ) , x ∈ χ p(x) =Pr(X=x),x\in\chi p(x)=Pr(X=x),xχ,则定义事件 X = x 0 X=x_0 X=x0的信息量为:
I ( x 0 ) = − l o g ( p ( x 0 ) ) I(x_0)=-log(p(x_0)) I(x0)=log(p(x0))
由于是概率所以 p ( x 0 ) p(x_0) p(x0)的取值范围是 [ 0 , 1 ] [0,1] [0,1],绘制为图形如下:
在这里插入图片描述
可见该函数符合我们对信息量的直觉,概率越小,信息量越大。

2️⃣ 熵

考虑另一个问题,对于某个事件,有 n n n种可能性,每一种可能性都有一个概率 p ( x i ) p(x_i) p(xi)。这样就可以计算出某一种可能性的信息量。
Eg:假设你拿出了你的电脑,按下开关,会有三种可能性,下表列出了每一种可能的概率及其对应的信息量:

序号事件概率p信息量
A电脑正常开机0.7 − l o g ( p ( A ) ) = 0.36 -log(p(A))=0.36 log(p(A))=0.36
B电脑无法开机0.2 − l o g ( p ( A ) ) = 1.61 -log(p(A))=1.61 log(p(A))=1.61
C电脑爆炸了0.1 − l o g ( p ( A ) ) = 2.30 -log(p(A))=2.30 log(p(A))=2.30

注:文中的对数均为自然对数 l n ( ) ln() ln()

我们现在有了信息量的定义,而熵用来表示所有信息量的期望,即:
H ( X ) = − ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) H(X)=-\sum_{i=1}^np(x_i)log(p(x_i)) H(X)=i=1np(xi)log(p(xi))
其中n代表所有的n种可能性,所以上面的问题结果就是
H ( X ) = − [ p ( A ) l o g ( p ( A ) ) + p ( B ) l o g ( p ( B ) ) + p ( C ) l o g ( p ( C ) ) ] = 0.7 ∗ 0.36 + 0.2 ∗ 1.61 + 0.1 ∗ 2.30 = 0.804 H(X)=-[p(A)log(p(A))+p(B)log(p(B))+p(C)log(p(C))]\\ =0.7*0.36+0.2*1.61+0.1*2.30\\ =0.804 H(X)=[p(A)log(p(A))+p(B)log(p(B))+p(C)log(p(C))]=0.70.36+0.21.61+0.12.30=0.804
然而有一类比较特殊的问题,比如投掷硬币只有两种可能,字朝上或花朝上。买彩票只有两种可能,中奖或不中奖。我们称之为0-1分布问题(二项分布的特例),对于这类问题,熵的计算方法可以简化为如下算式:
H ( X ) = − ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) = − p ( x ) l o g ( p ( x ) ) − ( 1 − p ( x ) ) l o g ( 1 − p ( x ) ) H(X)=-\sum_{i=1}^np(x_i)log(p(x_i))\\=-p(x)log(p(x))-(1-p(x))log(1-p(x)) H(X)=i=1np(xi)log(p(xi))=p(x)log(p(x))(1p(x))log(1p(x))

3️⃣ 相对熵(KL散度)

相对熵又称KL散度,如果我们对于同一个随机变量x有两个单独的概率分布 P(x)Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异
即如果用P来描述目标问题,而不是用Q来描述目标问题,得到的信息增量。

在机器学习中,P往往用来表示样本的真实分布,比如[1,0,0]表示当前样本属于第一类。Q用来表示模型所预测的分布,比如[0.7,0.2,0.1]
直观的理解就是如果用P来描述样本,那么就非常完美。而用Q来描述样本,虽然可以大致描述,但是不是那么的完美,信息量不足,需要额外的一些“信息增量”才能达到和P一样完美的描述。如果我们的Q通过反复训练,也能完美的描述样本,那么就不再需要额外的“信息增量”,Q等价于P

KL散度的计算公式:
D K L ( p ∣ ∣ q ) = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) q ( x i ) ) ( 3.1 ) D_{KL}(p||q)=\sum_{i=1}^np(x_i)log\left(\frac{p(x_i)}{q(x_i)}\right)\quad(3.1) DKL(pq)=i=1np(xi)log(q(xi)p(xi))(3.1)
n n n为事件的所有可能性。
D K L D_{KL} DKL的值越小,表示 q q q分布和 p p p分布越接近

4️⃣ 交叉熵

对式3.1变形可以得到:
D K L ( p ∣ ∣ q ) = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) = − H ( p ( x ) ) + [ − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) ] D_{KL}(p||q)=\sum_{i=1}^np(x_i)log(p(x_i))-\sum_{i=1}^np(x_i)log(q(x_i))\\=-H(p(x))+[-\sum_{i=1}^np(x_i)log(q(x_i))] DKL(pq)=i=1np(xi)log(p(xi))i=1np(xi)log(q(xi))=H(p(x))+[i=1np(xi)log(q(xi))]
等式的前一部分恰巧就是 p p p的熵,等式的后一部分,就是交叉熵:
H ( p , q ) = − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) H(p,q)=-\sum_{i=1}^np(x_i)log(q(x_i)) H(p,q)=i=1np(xi)log(q(xi))
在机器学习中,我们需要评估label和predicts之间的差距,使用KL散度刚刚好,即 D K L ( y ∣ ∣ y ^ ) D_{KL}(y||\hat{y}) DKL(yy^),由于KL散度中的前一部分 − H ( y ) −H(y) H(y)不变,故在优化过程中,只需要关注交叉熵就可以了。所以一般在机器学习中直接用用交叉熵做loss,评估模型。

Ⓜ️机器学习中交叉熵的应用

1️⃣ 为什么要用交叉熵做loss函数?

在线性回归问题中,常常使用MSE (Mean Squared Error)作为loss函数,比如:
l o s s = 1 2 m ∑ i = 1 n ( y i − y i ^ ) 2 loss=\frac{1}{2m}\sum_{i=1}^n(y_i-\hat{y_i})^2 loss=2m1i=1n(yiyi^)2
这里的m表示m个样本的,loss为m个样本的loss均值。
MSE在线性回归问题中比较好用,那么在逻辑分类问题中还是如此么?

2️⃣ 交叉熵在单分类问题中的使用

这里的单类别是指,每一张图像样本只能有一个类别,比如只能是狗或只能是猫。
交叉熵在单分类问题上基本是标配的方法
l o s s = − ∑ i = 1 n y i l o g ( y i ) ^ ( 2.1 ) loss=-\sum_{i=1}^ny_ilog(\hat{y_i)}\quad(2.1) loss=i=1nyilog(yi)^(2.1)
上式为一张样本的loss计算方法。式2.1中n代表着n种类别。
举例说明,比如有如下样本
在这里插入图片描述
对应的标签和预测值

*青蛙
Label010
Prediction0.30.60.1

那么
l o s s = − ( 0 ∗ l o g ( 0.3 ) + 1 ∗ l o g ( 0.6 ) + 0 ∗ l o g ( 0.1 ) = − l o g ( 0.6 ) loss=-(0*log(0.3)+1*log(0.6)+0*log(0.1)=-log(0.6) loss=(0log(0.3)+1log(0.6)+0log(0.1)=log(0.6)
对应一个batch的loss就是:
l o s s = − 1 m ∑ j = 1 m ∑ i = 1 n y i j l o g ( y i j ^ ) loss = -\frac{1}{m}\sum_{j=1}^m\sum_{i=1}^ny_{ij}log(\hat{y_{ij}}) loss=m1j=1mi=1nyijlog(yij^)
m为当前batch的样本数

3️⃣ 交叉熵在多分类问题中的使用

这里的多类别是指,每一张图像样本可以有多个类别,比如同时包含一只猫和一只狗
和单分类问题的标签不同,多分类的标签是n-hot
比如下面这张样本图,即有猫,又有狗,所以是一个多分类问题
在这里插入图片描述
对应的标签和预测值

*青蛙
Label011
Prediction0.10.70.8

值得注意的是,这里的Prediction不再是通过softmax计算的了,这里采用的是sigmoid。将每一个节点的输出归一化到[0,1]之间。所有Prediction值的和也不再为1。换句话说,就是每一个Label都是独立分布的,相互之间没有影响。所以交叉熵在这里是单独对每一个节点进行计算,每一个节点只有两种可能值,所以是一个二项分布。前面说过对于二项分布这种特殊的分布,熵的计算可以进行简化。

同样的,交叉熵的计算也可以简化,即
l o s s = − y l o g ( y ^ ) − ( 1 − y ) l o g ( 1 − y ^ ) loss = -ylog(\hat{y})-(1-y)log(1-\hat{y}) loss=ylog(y^)(1y)log(1y^)
注意,上式只是针对一个节点的计算公式。这一点一定要和单分类loss区分开来。
例子中可以计算为:
l o s s 蛙 = − 0 ∗ l o g ( 0.1 ) − ( 1 − 0 ) l o g ( 1 − 0.1 ) = − l o g ( 0.9 ) l o s s 猫 = − 1 ∗ l o g ( 0.7 ) − ( 1 − 1 ) l o g ( 1 − 0.7 ) = − l o g ( 0.7 ) l o s s 狗 = − 1 ∗ l o g ( 0.8 ) − ( 1 − 1 ) l o g ( 1 − 0.8 ) = − l o g ( 0.8 ) loss_{蛙} = -0*log(0.1)-(1-0)log(1-0.1)=-log(0.9)\\ loss_{猫} = -1*log(0.7)-(1-1)log(1-0.7)=-log(0.7)\\ loss_{狗} = -1*log(0.8)-(1-1)log(1-0.8)=-log(0.8) loss=0log(0.1)(10)log(10.1)=log(0.9)loss=1log(0.7)(11)log(10.7)=log(0.7)loss=1log(0.8)(11)log(10.8)=log(0.8)
单张样本的loss即为 l o s s = l o s s 蛙 + l o s s 猫 + l o s s 狗 loss=loss_蛙+loss_猫+loss_狗 loss=loss+loss+loss
每一个batch的loss就是:
l o s s = ∑ j = 1 m ∑ i = 1 n − y i j l o g ( y i j ^ ) − ( 1 − y i j ) l o g ( 1 − y i j ^ ) loss = \sum_{j=1}^m \sum_{i=1}^n-y_{ij}log(\hat{y_{ij}})-(1-y_{ij})log(1-\hat{y_{ij}}) loss=j=1mi=1nyijlog(yij^)(1yij)log(1yij^)
式中m为当前batch中的样本量,n为类别数。

㊗️总结

我只是知识的搬运工,希望对你们多少有点用❤️

以上内容参考自链接:一文搞懂交叉熵在机器学习中的使用,透彻理解交叉熵背后的直觉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ONLY_AIGC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值