khan - linear algebra - null & column space

Introduction to the null space of a matrix

A x = 0 Ax=0 Ax=0

To prove the set of the solutions of x x x can be a subspace.

  1. When x = 0 x = 0 x=0, it works.
  2. Fine two solutions of x x x, v 1 v_1 v1 and v 2 v_2 v2, they satisfy
    A v 1 = 0 Av_1 = 0 Av1=0
    A v 2 = 0 Av_2 = 0 Av2=0
    Then:
    A ( v 1 + v 2 ) = 0 A(v_1+v_2)=0 A(v1+v2)=0 and A ( c v 1 ) = 0 , A ( c v 2 ) = 0 A(cv_1) = 0, A(cv_2) = 0 A(cv1)=0,A(cv2)=0

So the null space is a valid subspace.


Calculating the null space of a matrix

[ A ∣ 0 ] → [ r r e f ( A ) ∣ 0 ] [A|0]→[rref(A)|0] [A0][rref(A)0]

N ( A ) = N ( r r e f ( A ) ) N(A)=N(rref(A)) N(A)=N(rref(A))

在这里插入图片描述


Relation to linear independence

The column vectors of matrix A A A are linearly independent if and only if the null space of matrix A A A only contains 0.


Column space of a matrix

A x = b Ax = b Ax=b has no solution, then b b b is not in the column space of A A A.
If A x = b Ax=b Ax=b has at least one solution, then b b b is in the column space of A A A.

Null space and column space basis


Visualizing a column space as a plane in R3


Proof: Any subspace basis has same number of elements

If set A A A, the basis of V V V has n n n entries, then we suppose a set of m m m vectors B ( m < n ) B(m<n) B(m<n), we can replace at least one entry in B B B with an entry in A A A one time, and do ti m m m times, B B B becomes a set of m entries in A A A, and basis in A A A are independent, so m > n m>n m>n.
So, if C C C(m elements) and D D D(n elements) are both basis of a same subspace, then m > = n m>=n m>=n, also n > = m n >= m n>=m.

Dimension of a subspace = # of elements in a basis for the subspace.


Dimension of the null space or nullity

nullity: Dimension of a null pace = # of free variables.
rank: Dimension of the column space = linearly independent column vectors.


Showing relation between basis cols and pivot cols

If the pivot columns of rref of A A A are linearly independent, then the null space of rref A A A only contains 0.
We know that N ( A ) = N ( r r e f ( A ) ) N(A)=N(rref(A)) N(A)=N(rref(A)) since row elementary operation didn’t change the solutions of matrix equation.
So the null space of A A A only contains 0.
So the pivot columns of A A A are linearly independent.


Showing that the candidate basis does span C(A)

Since N ( A ) = N ( r r e f A ) N(A) = N(rrefA) N(A)=N(rrefA)
A [ x 1 x 2 x 3 x 4 x 5 ] = 0            r r e f ( A ) [ x 1 x 2 x 3 x 4 x 5 ] = 0 A\left[\begin{matrix}x_1\\x_2\\x_3\\x_4\\x_5\end{matrix}\right] = 0 \ \ \ \ \ \ \ \ \ \ rref(A)\left[\begin{matrix}x_1\\x_2\\x_3\\x_4\\x_5\end{matrix}\right] = 0 Ax1x2x3x4x5=0          rref(A)x1x2x3x4x5=0 x 1 a 1 ⃗ + x 2 a 2 ⃗ + x 3 a 3 ⃗ + x 4 a 4 ⃗ + x 5 a 5 ⃗ = 0 (1) x_1\vec{a_1} + x_2\vec{a_2}+x_3\vec{a_3}+x_4\vec{a_4}+x_5\vec{a_5}=0\tag1 x1a1 +x2a2 +x3a3 +x4a4 +x5a5 =0(1)

x 1 r 1 ⃗ + x 2 r 2 ⃗ + x 3 r 3 ⃗ + x 4 r a 4 ⃗ + x 5 r 5 ⃗ = 0 (2) x_1\vec{r_1} + x_2\vec{r_2}+x_3\vec{r_3}+x_4\vec{ra_4}+x_5\vec{r_5}=0 \tag 2 x1r1 +x2r2 +x3r3 +x4ra4 +x5r5 =0(2)

Since x 3 x_3 x3 and x 5 x_5 x5 are free variables in equation ( 2 ) (2) (2), x 3 x_3 x3 and x 5 x_5 x5 are also free variables in equation ( 1 ) (1) (1), so column 3 and column 5 in A A A can also be represented by other columns in A A A.
So column 1, column 2 and column 4 in A A A can span the column space of A A A.
Besides, we have proved that column 1, column 2 and column 4 in A A A are independent.
So the corresponding columns of the basis columns in r r e f ( A ) rref(A) rref(A) are the basis columns of A A A.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值