【leetcode】岛屿类问题的通用解法

在 LeetCode 中,「岛屿问题」是一个系列系列问题,比如

200. 岛屿数量 (Easy)
463. 岛屿的周长 (Easy)
695. 岛屿的最大面积 (Medium)
827. 最大人工岛 (Hard)

我们所熟悉的 DFS(深度优先搜索)问题通常是在或者结构上进行的。而我们今天要讨论的 DFS问题,是在一种网格结构中进行的。岛屿问题是这类网格 DFS问题的典型代表。网格结构遍历起来要比二叉树复杂一些,如果没有掌握一定的方法,DFS 代码容易写得冗长繁杂。
本文将以岛屿问题为例,展示网格类问题 DFS 通用思路,以及如何让代码变得简洁

一、网格问题的基本概念

我们首先明确一下岛屿问题中的网格结构是如何定义的,以方便我们后面的讨论。

网格问题是由 m×n 个小方格组成一个网格,每个小方格与其上下左右四个方格认为是相邻的,要在这样的网格上进行某种搜索。

岛屿问题是一类典型的网格问题。每个格子中的数字可能是 0 或者 1。我们把数字为 0 的格子看成海洋格子,数字为 1 的格子看成陆地格子,这样相邻的陆地格子就连接成一个岛屿。
在这里插入图片描述

在这样一个设定下,就出现了各种岛屿问题的变种,包括岛屿的数量、面积、周长等。不过这些问题,基本都可以用 DFS 遍历来解决。

二、DFS 的基本结构

网格结构要比二叉树结构稍微复杂一些,它其实是一种简化版的图结构。要写好网格上的 DFS 遍历,我们首先要理解二叉树上的 DFS 遍历方法,再类比写出网格结构上的 DFS 遍历。我们写的二叉树 DFS 遍历一般是这样的:

void traverse(TreeNode root) {
    // 判断 base case
    if (root == null) {
        return;
    }
    // 访问两个相邻结点:左子结点、右子结点
    traverse(root.left);
    traverse(root.right);
}

可以看到,二叉树的 DFS 有两个要素:「访问相邻结点」和「判断 base case」。

  • 第一个要素是访问相邻结点。二叉树的相邻结点非常简单,只有左子结点和右子结点两个。二叉树本身就是一个递归定义的结构:一棵二叉树,它的左子树和右子树也是一棵二叉树。那么我们的
    DFS 遍历只需要递归调用左子树和右子树即可。
  • 第二个要素是判断 base case。一般来说,二叉树遍历的 base caseroot == null。这样一个条件判断其实有两个含义:一方面,这表示 root 指向的子树为空,不需要再往下遍历了。另一方面,在 root == null 的时候及时返回,可以让后面的 root.left 和 root.right 操作不会出现空指针异常。

对于网格上的 DFS,我们完全可以参考二叉树的 DFS,写出网格 DFS 的两个要素:

  • 首先,网格结构中的格子有多少相邻结点?答案是上下左右四个。对于格子 (r, c) 来说(r 和 c 分别代表行坐标和列坐标),四个相邻的格子分别是 (r-1, c)、(r+1, c)、(r, c-1)、(r, c+1)。换句话说,网格结构是「四叉」的。
    在这里插入图片描述

  • 其次,网格 DFS 中的 base case 是什么?从二叉树的 base case 对应过来,应该是网格中不需要继续遍历、grid[r][c] 会出现数组下标越界异常的格子,也就是那些超出网格范围的格子。
    在这里插入图片描述

这一点稍微有些反直觉,坐标竟然可以临时超出网格的范围?这种方法我称为「先污染后治理」—— 甭管当前是在哪个格子,先往四个方向走一步再说,如果发现走出了网格范围再赶紧返回。这跟二叉树的遍历方法是一样的,先递归调用,发现 root == null 再返回。

这样,我们得到了网格 DFS 遍历的框架代码:

void dfs(int[][] grid, int r, int c) {
    // 判断 base case
    // 如果坐标 (r, c) 超出了网格范围,直接返回
    if (!inArea(grid, r, c)) {
        return;
    }
    // 访问上、下、左、右四个相邻结点
    dfs(grid, r - 1, c);
    dfs(grid, r + 1, c);
    dfs(grid, r, c - 1);
    dfs(grid, r, c + 1);
}

// 判断坐标 (r, c) 是否在网格中
boolean inArea(int[][] grid, int r, int c) {
    return 0 <= r && r < grid.length 
        	&& 0 <= c && c < grid[0].length;
}

三、如何避免重复遍历

网格结构的 DFS 与二叉树的 DFS 最大的不同之处在于,遍历中可能遇到遍历过的结点。这是因为,网格结构本质上是一个「图」,我们可以把每个格子看成图中的结点,每个结点有向上下左右的四条边。在图中遍历时,自然可能遇到重复遍历结点。

这时候,DFS 可能会不停地「兜圈子」,永远停不下来,如下图所示:
在这里插入图片描述
如何避免这样的重复遍历呢?答案是标记已经遍历过的格子

以岛屿问题为例,我们需要在所有值为 1 的陆地格子上做 DFS 遍历。每走过一个陆地格子,就把格子的值改为 2,这样当我们遇到 2 的时候,就知道这是遍历过的格子了。也就是说,每个格子可能取三个值:

  • 0 —— 海洋格子
  • 1 —— 陆地格子(未遍历过)
  • 2 —— 陆地格子(已遍历过)

我们在框架代码中加入避免重复遍历的语句:

void dfs(int[][] grid, int r, int c) {
    // 判断 base case
    if (!inArea(grid, r, c)) {
        return;
    }
    // 如果这个格子不是岛屿,直接返回
    if (grid[r][c] != 1) {
        return;
    }
    grid[r][c] = 2; // 将格子标记为「已遍历过」
    
    // 访问上、下、左、右四个相邻结点
    dfs(grid, r - 1, c);
    dfs(grid, r + 1, c);
    dfs(grid, r, c - 1);
    dfs(grid, r, c + 1);
}

// 判断坐标 (r, c) 是否在网格中
boolean inArea(int[][] grid, int r, int c) {
    return 0 <= r && r < grid.length 
        	&& 0 <= c && c < grid[0].length;
}

在这里插入图片描述

这样,我们就得到了一个岛屿问题、乃至各种网格问题的通用 DFS 遍历方法。以下所讲的几个例题,其实都只需要在 DFS 遍历框架上稍加修改而已。

小贴士:

在一些题解中,可能会把「已遍历过的陆地格子」标记为和海洋格子一样的0,美其名曰「陆地沉没方法」,即遍历完一个陆地格子就让陆地「沉没」为海洋。这种方法看似很巧妙,但实际上有很大隐患,因为这样我们就无法区分「海洋格子」和「已遍历过的陆地格子」了。如果题目更复杂一点,这很容易出bug。

四、岛屿问题的解法

理解了网格结构的 DFS 遍历方法以后,岛屿问题就不难解决了。下面我们分别看看三个题目该如何用 DFS 遍历来求解。

例题 1:岛屿的最大面积
LeetCode 695. Max Area of Island (Medium)

题目:给定一个包含了一些 0 和 1 的非空二维数组 grid,一个岛屿是一组相邻的 1(代表陆地),这里的「相邻」要求两个 1 必须在水平或者竖直方向上相邻。你可以假设 grid 的四个边缘都被 0(代表海洋)包围着。
要求:找到给定的二维数组中最大的岛屿面积。如果没有岛屿,则返回面积为 0 。

这道题目只需要对每个岛屿做 DFS 遍历,求出每个岛屿的面积就可以了。求岛屿面积的方法也很简单,代码如下,每遍历到一个格子,就把面积加一。

int area(int[][] grid, int r, int c) {  
    return 1 
        + area(grid, r - 1, c)
        + area(grid, r + 1, c)
        + area(grid, r, c - 1)
        + area(grid, r, c + 1);
}

最终我们得到的完整题解代码如下:

public int maxAreaOfIsland(int[][] grid) {
    int res = 0;
    for (int r = 0; r < grid.length; r++) {
        for (int c = 0; c < grid[0].length; c++) {
            if (grid[r][c] == 1) {
                int a = area(grid, r, c);
                res = Math.max(res, a);
            }
        }
    }
    return res;
}

int area(int[][] grid, int r, int c) {
    if (!inArea(grid, r, c)) {
        return 0;
    }
    if (grid[r][c] != 1) {
        return 0;
    }
    grid[r][c] = 2;
    
    return 1 
        + area(grid, r - 1, c)
        + area(grid, r + 1, c)
        + area(grid, r, c - 1)
        + area(grid, r, c + 1);
}

boolean inArea(int[][] grid, int r, int c) {
    return 0 <= r && r < grid.length 
        	&& 0 <= c && c < grid[0].length;
}

例题 2:填海造陆问题
LeetCode 827. Making A Large Island (Hard)

在二维地图上, 0 代表海洋,1代表陆地,我们最多只能将一格 0 (海洋)变成 1 (陆地)。进行填海之后,地图上最大的岛屿面积是多少?

这道题是岛屿最大面积问题的升级版。现在我们有填海造陆的能力,可以把一个海洋格子变成陆地格子,进而让两块岛屿连成一块。那么填海造陆之后,最大可能构造出多大的岛屿呢?

大致的思路我们不难想到,我们先计算出所有岛屿的面积,在所有的格子上标记出岛屿的面积。然后搜索哪个海洋格子相邻的两个岛屿面积最大。例如下图中红色方框内的海洋格子,上边、左边都与岛屿相邻,我们可以计算出它变成陆地之后可以连接成的岛屿面积为 7+1+2=10。
在这里插入图片描述
然而,这种做法可能遇到一个问题。如下图中红色方框内的海洋格子,它的上边、左边都与岛屿相邻,这时候连接成的岛屿面积难道是 7+1+7 ?显然不是。这两个 7 来自同一个岛屿,所以填海造陆之后得到的岛屿面积应该只有 7+1 = 8。
在这里插入图片描述
可以看到,要让算法正确,我们得能区分一个海洋格子相邻的两个 7 是不是来自同一个岛屿。那么,我们不能在方格中标记岛屿的面积,而应该标记岛屿的索引(下标),另外用一个数组记录每个岛屿的面积,如下图所示。这样我们就可以发现红色方框内的海洋格子,它的「两个」相邻的岛屿实际上是同一个。
在这里插入图片描述
可以看到,这道题实际上是对网格做了两遍 DFS:

  • 第一遍 DFS 遍历陆地格子,计算每个岛屿的面积并标记岛屿;
  • 第二遍 DFS 遍历海洋格子,观察每个海洋格子相邻的陆地格子。

这道题的基本思路就是这样,具体的代码还有一些需要注意的细节,但和本文的主题已经联系不大。各位可以自己思考一下如何把上述思路转化为代码。

例题 3:岛屿的周长
LeetCode 463. Island Perimeter (Easy)

给定一个包含 0 和 1 的二维网格地图,其中 1 表示陆地,0 表示海洋。网格中的格子水平和垂直方向相连(对角线方向不相连)。整个网格被水完全包围,但其中恰好有一个岛屿(一个或多个表示陆地的格子相连组成岛屿)。岛屿中没有“湖”(“湖” 指水域在岛屿内部且不和岛屿周围的水相连)。格子是边长为 1 的正方形。计算这个岛屿的周长。
在这里插入图片描述

实话说,这道题用 DFS 来解并不是最优的方法。对于岛屿,直接用数学的方法求周长会更容易。不过这道题是一个很好的理解 DFS 遍历过程的例题,不信你跟着我往下看。

我们再回顾一下 网格 DFS 遍历的基本框架:

void dfs(int[][] grid, int r, int c) {
    // 判断 base case
    if (!inArea(grid, r, c)) {
        return;
    }
    // 如果这个格子不是岛屿,直接返回
    if (grid[r][c] != 1) {
        return;
    }
    grid[r][c] = 2; // 将格子标记为「已遍历过」
    
    // 访问上、下、左、右四个相邻结点
    dfs(grid, r - 1, c);
    dfs(grid, r + 1, c);
    dfs(grid, r, c - 1);
    dfs(grid, r, c + 1);
}

// 判断坐标 (r, c) 是否在网格中
boolean inArea(int[][] grid, int r, int c) {
    return 0 <= r && r < grid.length 
        	&& 0 <= c && c < grid[0].length;
}

可以看到,dfs 函数直接返回有这几种情况:

  1. !inArea(grid, r, c),即坐标 (r, c) 超出了网格的范围,也就是我所说的「先污染后治理」的情况
  2. grid[r][c] != 1,即当前格子不是岛屿格子,这又分为两种情况:
    • grid[r][c] == 0,当前格子是海洋格子
    • grid[r][c] == 2,当前格子是已遍历的陆地格子

那么这些和我们岛屿的周长有什么关系呢?实际上,岛屿的周长是计算岛屿全部的「边缘」,而这些边缘就是我们在 DFS 遍历中,dfs 函数返回的位置。观察题目示例,我们可以将岛屿的周长中的边分为两类,如下图所示。黄色的边是与网格边界相邻的周长,而蓝色的边是与海洋格子相邻的周长。

当我们的 dfs 函数因为「坐标 (r, c) 超出网格范围」返回的时候,实际上就经过了一条黄色的边;而当函数因为「当前格子是海洋格子」返回的时候,实际上就经过了一条蓝色的边。这样,我们就把岛屿的周长跟 DFS 遍历联系起来了,我们的题解代码也呼之欲出:
在这里插入图片描述

public int islandPerimeter(int[][] grid) {
    for (int r = 0; r < grid.length; r++) {
        for (int c = 0; c < grid[0].length; c++) {
            if (grid[r][c] == 1) {
                // 题目限制只有一个岛屿,计算一个即可
                return dfs(grid, r, c);
            }
        }
    }
    return 0;
}

int dfs(int[][] grid, int r, int c) {
    // 函数因为「坐标 (r, c) 超出网格范围」返回,对应一条黄色的边
    if (!inArea(grid, r, c)) {
        return 1;
    }
    // 函数因为「当前格子是海洋格子」返回,对应一条蓝色的边
    if (grid[r][c] == 0) {
        return 1;
    }
    // 函数因为「当前格子是已遍历的陆地格子」返回,和周长没关系
    if (grid[r][c] != 1) {
        return 0;
    }
    grid[r][c] = 2;
    return dfs(grid, r - 1, c)
        + dfs(grid, r + 1, c)
        + dfs(grid, r, c - 1)
        + dfs(grid, r, c + 1);
}

// 判断坐标 (r, c) 是否在网格中
boolean inArea(int[][] grid, int r, int c) {
    return 0 <= r && r < grid.length 
        	&& 0 <= c && c < grid[0].length;
}

五、总结

对比完三个例题的题解代码,你会发现网格问题的代码真的都非常相似。其实这一类问题属于「会了不难」类型。了解树、图的基本遍历方法,再学会一点小技巧,掌握网格 DFS 遍历就一点也不难了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梧杵

还是学生,生活太难

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值