图和拉普拉斯矩阵
解释:可以看到,上面的图是无向图
,所以其对应的邻接矩阵是对称矩阵,表示如果顶点1和顶点3有边,那么3到顶点1也有边,但是注意对于有向图就未必,因为可能顶点1指向顶点3,顶点3却没有指向顶点1,这个时候顶点3到顶点1是没有边的。
解释:度矩阵
应该很好理解,即一共有多少条边与该顶点有关,然后把这个数写在方阵的对角线
上。
可以看到,拉普拉斯矩阵还是对称矩阵
。
上面是连通图
的例子,我们举一个非连通图
的例子。请注意:下面这个图有两个连通分量
(或者叫做连通子图
),这个概念后面会用到。
邻接矩阵为:
度矩阵为:
由此可得拉普拉斯矩阵为:
注:我画方框是因为每一个方框都是 一个连通图,都为方阵, 方阵之外的其他地方
的值必全为0.
拉普拉斯矩阵的性质
上面提到了拉普拉斯矩阵
,下面说一说他的性质。
5个性质:
性质1.
性质2.
上面两个性质是一起的。
性质1
大家看看拉普拉斯矩阵的定义,
D
−
W
D-W
D−W,而度矩阵
D
D
D的对角线的值就是邻接矩阵
W
W
W的行和。由于
D
D
D除了对角线之外其余为0,一减
W
W
W,除对角线之外全是负的,也就是说:如果去除对角线的值,拉普拉斯矩阵的行和就是
W
W
W的行和的相反数,然后加上等于
W
W
W行和的对角线,所以行和全部是0了。
######
性质2
,熟悉线性代数的人都知道,对一个方阵求行和,其实相当于乘以一个
n
n
n维的,每一个维度都为1的向量,一般我们用
e
⃗
\vec e
e表示。
所以
L
∗
e
⃗
=
0
⃗
L*\vec e=\vec 0
L∗e=0(等于0是因为性质1
),其中
0
⃗
\vec 0
0向量也是
n
n
n维向量,每一个维度都为0,对应于性质1:L的每个行和为0,共有
n
n
n行。
我们将上述等式改写成 L ∗ e ⃗ = 0 ∗ e ⃗ L*\vec e=0*\vec e L∗e=0∗e,这是特征值和特征向量的定义,这个等式告诉我们:L有一个特征值为0,且这个特征值对应的特征向量中有一个是 e ⃗ \vec e e。
性质3.
性质4.
性质3,4是一起的,我们需要先证明性质4
第一行变换到第二行其实就是将第一行复制了一遍。
其他的应该好理解了,比如第2行到第3行,我们利用了度
d
d
d和邻接矩阵
w
i
j
w_{ij}
wij的关系。
既然已经证明了L是半正定
的矩阵,那么当然就可以推出性质3,有n个非负的特征值。
性质5.
我们把这个证明从易到难来进行。先来个线性代数的预备知识
,方阵可逆的情况下,特征值
λ
1
\lambda_1
λ1的重数等于
λ
1
\lambda_1
λ1对应的特征向量中线性无关的最大个数;方阵不可逆的情况下,特征值
λ
1
\lambda_1
λ1的重数大于等于
λ
1
\lambda_1
λ1对应的特征向量中线性无关的最大个数。
情况1
这个我们要证明的是,0特征值对应的特征向量每个分量相同,也即该特征向量是
k
e
⃗
k\vec e
ke。
我们前面有:
也即证明了每一个分量需要相等,证明完毕。
不过,上述可能会有一点难懂, w i j w_{ij} wij非负,为什么可以证明后面的为0呢?难道没有可能后面的某一项不为0,恰好此时 w i j w_{ij} wij为0,从而继续保持整体为0?
那我们就假设有一项 f i − f j ! = 0 f_i-f_j!=0 fi−fj!=0,那么会发生什么情况呢? f f f的其他分量会因为这个不相等从而至少分成两个阵营,比如 f m f_m fm只有两种情况:
- 只和它们其中一个相等
- 和两个都不相等。
我们讨论第一种情况就够了,即假设分成了两个阵营,假设四个顶点的无向图, f 1 , f 2 f_1,f_2 f1,f2一组, f 3 , f 4 f_3,f_4 f3,f4一组,由于两个阵营不相等,那么强迫 w i j = 0 w_{ij}=0 wij=0,从而会发生节点1,2不会有边连接到节点3,4。这就不是只有一个连通图了啊,而是至少两个。
情况2
这个证明是容易的。
即:
注意到,上面的每一个L都对应一个连通图,是方阵,它的上下左右都是0,至于是几阶,那么看情况了。如果觉得抽象地可以参照引言处非连通图的例子。
然后精彩之处来了,我们可以构造
你会发现重大秘密
- 这k个向量都是线性无关的。
- 这k个向量右乘以拉普拉斯矩阵都是0向量,换言之,这k个向量都是拉普拉斯矩阵特征值0对应的特征向量
- 由1.2我们可以得到,一个图有多少个连通图,那么特征值0就对应多少个不相关的特征向量。
情况2得证,性质5证毕。
关于性质5的例子:
组合成一个L
将这两个基向量组合起来。
(从机器学习谱聚类的角度)把上面这个看做一个矩阵,
x
1
=
(
1
,
0
)
x_1=(1,0)
x1=(1,0),这是我们赋予
x
1
x_1
x1的新特征。
即从数学上可知,两个连通图中的顶点各为一类。这也很符合我们的直觉。
归一化拉普拉斯矩阵
下面接着介绍两种非常常见的:归一化拉普拉斯矩阵
。
一个非常疑惑的问题
是:为什么需要归一化,这样有什么好处呢?大家可以好好思考。
归一化与标准的异同
对于对称型,有性质:
这个很显然,将对称型完整带入上面,然后先对
f
f
f进行操作,就是上面的结果,相当于那个归一化
D
−
1
/
2
D^{-1/2}
D−1/2变成了归一到
f
f
f上去了。
这里我想不用多说吧,只需要利用特征值概念就可以发现这是充要条件。
这个证明比上面这个还简单。
这个也很容易证明,直接用归一化的L与特征向量相乘会发现是0向量。
以上两个都可以类似L那样,写出半正定定义
>
=
0
>=0
>=0的式子。
这个也是类似的,简短的说就是左右乘以一个对角矩阵不会影响这个性质,也就是说有下面: