conda下载安装torch-scatter的时候报错以及conda如何下载torch_geometric(以及torch_sparse)

本文详细讲述了在项目中遇到的torch-geometric包依赖问题,作者通过实例演示了如何正确安装与其相关的四个包,包括使用conda安装pytorch-sparse等,并提供了查找和选择最新维护者的方法。最后,成功导入并解决了所有依赖问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch-scatter

背景

想要使用conda安装torch-scatter,却不知道使用什么命令。

在https://anaconda.org/中搜索了一下这个包,

在这里插入图片描述

发现这么多库里面都有这个包,于是我点进去第一个,然后使用了第一个里面提供的命令,如下:

conda install conda-forge::torch-scatter

然而,这个命令报错了,坑爹呀。

在这里插入图片描述

解决方案

使用下面这个命令:

conda install pytorch-scatter -c pyg

这个命令我是从https://pypi.org/project/torch-scatter/这里知晓的,可以成功。

在这里插入图片描述

torch_geometric

torch_geometric也好,torch-scatter也好,直接使用命令conda install 包 安装全部都会是报错的。之前一直是通过anconda.org来查找包的安装命令,发现里面的命令对这两个包行不通。这次发现pypi.org里面的命令可以。你直接进入网站,搜索这个包,就会有关于这个包的介绍和安装。

这这里直接给出torch_geometric的安装方法,其可以在这里找到:https://pypi.org/project/torch-geometric/#installation。

也就是如下命令。

conda install pyg -c pyg

安装完成后,发现可以导入了:

from torch_geometric.nn import GINConv, global_mean_pool, global_max_pool, global_add_pool

torch_geometric

还是用我们上面教的方法,在pypi里面搜,得到安装命令如下:

conda install pytorch-sparse -c pyg

对应的网址参考:https://pypi.org/project/torch-sparse/

然后就可以导入了:

from torch_sparse import SparseTensor
### 安装 `torch-geometric` 和其依赖项 (`torch-scatter`, `torch-sparse`, `torch-cluster`),建议遵循官方推荐的方法来设置环境。这通常涉及使用特定于 PyTorch 版本和 CUDA 配置的预编译二进制文件。 #### 方法一:通过 PyPI 安装最新稳定版 对于大多数用户而言,最简单的方式是从 Python Package Index (PyPI) 获取最新的稳定版本: ```bash pip install torch_geometric[full] ``` 这条命令会自动处理所有必要的依赖关系并安装它们[^1]。 #### 方法二:针对特定 PyTorch/CUDA 组合的手动安装 如果需要匹配某个具体的 PyTorch 或者 CUDA 版本,则应该先确认已正确安装所需版本的 PyTorch 后再继续如下操作: 假设已经安装了 PyTorch 1.7.1 并且想要兼容 CUDA 11.0 的情况下,可以从指定 URL 下载适合当前系统的 wheel 文件,并依次执行下面几条指令完成各个组件的部署: ```bash pip install https://data.pyg.org/whl/torch-1.5.8-cp37-cp37m-linux_x86_64.whl pip install https://data.pyg.org/whl/torch-1.7.1%2Bcu110/torch_scatter-2.0.5-cp37-cp37m-linux_x86_64.whl pip install https://data.pyg.org/whl/torch-1.7.1%2Bcu110/torch_sparse-0.6.8-cp37-cp37m-linux_x86_64.whl pip install https://data.pyg.org/whl/torch-1.7.1%2Bcu110/torch_spline_conv-1.2.0-cp37-cp37m-linux_x86_64.whl pip install torch_geometric==1.7.0 ``` 请注意替换上述链接中的版本号以适应实际使用的 PyTorch 和操作系统架构[^2]。 #### 检查安装成功与否 可以通过导入这些库来进行简单的测试,验证是否安装无误: ```python import torch from torch_geometric.data import Data print(torch.__version__) print(Data) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值