torch.var()、样本方差、母体方差

本文介绍了方差的两种类型:样本方差和总体方差,强调了它们在数据量和目的上的区别。在PyTorch中,`torch.var`函数可以根据`unbiased`参数计算这两种方差。当`unbiased`为默认的`True`时,计算样本方差;设为`False`时,则计算总体方差。通过示例展示了如何使用该函数并观察其结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

方差的分类

在这里插入图片描述
这两者有显然的区别,为什么会有这个区别呢?
区别有二,这两个区别互相联系,不可分割:

  1. 数据的多少。上面这个只有一部分样本,而下面这个是有完整数据,即总体,母体。
  2. 目的。你是要算这部分数据的方差,还是要估计总体的方差。如果是前者,那么使用母体方差公式,如果是后者,使用样本方差公式。

进一步解释:当我们只有一部分样本的时候,显然我们是无法估计出完整数据的方差的(下面这个公式),所以,上面这个公式其实是一个近似估计,但是这个估计的期望是等于完整数据的方差的,即无偏估计。

torch.var

import torch

torch.var两种方差都可以计算,这取决于一个参数,即unbiased,无偏的意思。默认值为true,也就是说,默认的目的是样本估计总体,使用的是上面这个样本方差公式,计算的是样本方差。

我们实战查看如下:

a=torch.tensor([1.0,-1])
torch.var(a)#分母除以的是1.

结果如下:

tensor(2.)

a=torch.tensor([1.0,-1])
torch.var(a,unbiased=False)#分母除以的是2.

结果如下:

tensor(1.)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值