切比雪夫多项式

前言

切比雪夫是俄国超级有名的,土生土长的数学家,其比较出名的贡献有:切比雪夫多项式和切比雪夫大数定律。本文说切比雪夫多项式。
参考视频:切比雪夫多项式

多项式函数

在这里插入图片描述
而且一般说某一个函数是多项式函数的时候,我们还会说其是多少次的,比如一次函数就是1次。

切比雪夫多项式

其表达式如下:
在这里插入图片描述

有人一脸懵逼,函数中有cos的东西,竟然最终会是x的多项式?这其实一点也不奇怪,为什么呢?个人觉得是因为x的定义域很古怪,从而这和三角函数会有千丝万缕的关系。你看下面的例子, n = 2 , x = c o s θ n=2,x=cos\theta n=2,x=cosθ,不看中间那个,即左边等于右边,右边就是 2 x 2 − 1 2x^2-1 2x21,左边就是 c o s 2 a r c c o s x cos2arccosx cos2arccosx,妙吧。

在这里插入图片描述

现在,我们要证明,对于任意n,右边都会是 c o s θ cos\theta cosθ的多项式。
在这里插入图片描述
温馨提示,左边那个式子肯定是有实部和虚部的,我们要找到的就是会被 i 2 = − 1 i^2=-1 i2=1抵消的那些实部,从而我们可以发现,左边实部= c o s θ cos\theta cosθ的多项式=右边实部= c o s n θ cosn\theta cosnθ

我们继续证明一个小东西,即不但 c o s n θ cosn\theta cosnθ c o s θ cos\theta cosθ的n次多项式,而且系数是 2 n − 1 2^{n-1} 2n1
在这里插入图片描述
这就证明完了。

性质

递推式

我们知道,当n取不同数的时候,得到不同次数的切比雪夫多项式。但是由于三角函数性质贼多,所以相邻的3个切比雪夫多项式存在如下关系:
在这里插入图片描述
完整证明如下,归根到底是三角函数的性质多

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值