目录
739. 每日温度
题目链接:link
1、题目描述
给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用 0 来代替。
2、思路
单调栈(下一个更大的模板题)
3、code
class Solution:
def dailyTemperatures(self, temperatures: List[int]) -> List[int]:
# 单调栈:从栈首开始递增
n = len(temperatures)
res = [0] * n
if n == 1:
return res
stack = []
stack.append(0)
for i in range(1,n):
if temperatures[i] <= temperatures[stack[-1]]:
stack.append(i)
else:
while len(stack)>=1 and temperatures[i]>temperatures[stack[-1]]: # 栈首元素对应的下一个更大已经找到
res[stack[-1]] = i - stack[-1]
stack.pop()
stack.append(i)
return res
4、复杂度分析
时间复杂度:O(n)
空间复杂度:O(n)
496. 下一个更大元素 I
题目链接:link
1、题目描述
nums1 中数字 x 的 下一个更大元素 是指 x 在 nums2 中对应位置 右侧 的 第一个 比 x 大的元素。
给你两个 没有重复元素 的数组 nums1 和 nums2 ,下标从 0 开始计数,其中nums1 是 nums2 的子集。
对于每个 0 <= i < nums1.length ,找出满足 nums1[i] == nums2[j] 的下标 j ,并且在 nums2 确定 nums2[j] 的 下一个更大元素 。如果不存在下一个更大元素,那么本次查询的答案是 -1 。
返回一个长度为 nums1.length 的数组 ans 作为答案,满足 ans[i] 是如上所述的 下一个更大元素 。
2、思路
和单调栈的模板几乎是一样的,但是要搞清楚几个事情
1️⃣结果应该长啥样?
结果应该和nums1长度一致,每个元素都代表nums1对应位置的元素在nums2中的下一个更大元素
2️⃣求得是哪个集合的下一个更大元素?
实际上求的是nums2中每个元素的下一个更大元素,在找到某一个元素的下一个更大元素之后,判断这个元素是否在nums1中,在的话就记录下来
3、code
class Solution:
def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]:
res = [-1] * len(nums1)
stack = []
stack.append(nums2[0])
i_x = {}
for i in range(len(nums1)):
i_x[nums1[i]] = i
for i in range(1,len(nums2)):
if nums2[i] <= stack[-1]:
stack.append(nums2[i])
else:
while len(stack)>=1 and nums2[i] > stack[-1]:
# 此时栈首元素stack[-1]的下一个更大元素为nums2[i]
# 判断stack[-1]是否是nums1中的元素
if stack[-1] in i_x.keys():
# 记录结果
res[i_x[stack[-1]]] = nums2[i]
stack.pop()
stack.append(nums2[i])
return res
4、复杂度分析
时间复杂度:O(n)
空间复杂度:O(n)
503. 下一个更大元素 II(循环)
题目链接:link
1、题目描述
给定一个循环数组 nums ( nums[nums.length - 1] 的下一个元素是 nums[0] ),返回 nums 中每个元素的 下一个更大元素 。
数字 x 的 下一个更大的元素 是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 -1 。
2、思路
一般循环的思路都是拷贝一份,i = i%2
3、code
class Solution:
def nextGreaterElements(self, nums: List[int]) -> List[int]:
n = len(nums)
res = [-1] * len(nums)
if n == 1:
return res
stack = []
stack.append(0)
for i in range(1,n*2):
i = i % n
if nums[i] <= nums[stack[-1]]:
stack.append(i)
else:
while len(stack)>=1 and nums[i] > nums[stack[-1]]:
# 此时栈首元素的下一个为nums[i]
res[stack[-1]] = nums[i]
stack.pop()
stack.append(i)
return res
4、复杂度分析
时间复杂度:O(n)
空间复杂度:O(n)
42. 接雨水(字节一面)
题目链接:link
1、题目描述
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
示例 1:
2、思路
双指针(纵向计算)
class Solution:
def trap(self, height: List[int]) -> int:
# 双指针:纵向计算,计算每个位置的左右最高的柱子,二者较小的作为高,这样乘上这个位置的宽度就是这个位置竖着一条的积水量
res = 0
n = len(height)
if n <= 2:
return 0
maxleft = [0]*n
maxright = [0]*n
maxleft[0] = height[0]
for i in range(1,n-1):
maxleft[i] = max(maxleft[i-1],height[i])
maxright[n-1] = height[n-1]
for i in range(n-2,0,-1):
maxright[i] = max(maxright[i+1],height[i])
for i in range(1,n-1):
h = max(0,min(maxleft[i],maxright[i]) - height[i])
res += h
return res
复杂度分析
时间复杂度:O(n)
空间复杂度:O(n)
单调栈(横向计算)
class Solution:
def trap(self, height: List[int]) -> int:
# 单调栈:横向计算,计算左右两个下一个更高的高度,求得就是对应位置横向一条的水量
n = len(height)
res = 0
if n <= 2:
return res
stack = []
stack.append(0)
for i in range(1,n):
if height[i] <= height[stack[-1]]:
stack.append(i)
else:
while len(stack)>=1 and height[i] > height[stack[-1]]:
mid = stack.pop()
if len(stack)>=1:
h_left = height[stack[-1]]
h_mid = height[mid]
h_right = height[i]
h = max(0,min(h_left,h_right) - h_mid)
w = i - stack[-1] -1
res += h * w
stack.append(i)
return res
复杂度分析
时间复杂度:O(n)
空间复杂度:O(n)
84. 柱状图中最大的矩形
题目链接:link
1、题目描述
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
示例 1:
2、代码
class Solution:
def largestRectangleArea(self, heights: List[int]) -> int:
if len(heights) == 1:
return heights[0]
# 单调栈:求左右第一个比这个值小的元素
heights.insert(0, 0)
heights.append(0)
n = len(heights)
stack = []
stack.append(0) # 栈里面存储下标
res = 0
for i in range(1,n):
if heights[i] > heights[stack[-1]]: # 保证栈是栈首最大
stack.append(i)
res = max(res,heights[i])
elif heights[i] == heights[stack[-1]]:
stack.append(i)
res = max(res,heights[i]*2)
else:
while len(stack) >= 1 and heights[i] < heights[stack[-1]]:
# 说明此时找到了比栈首元素对应高度更矮的高度
mid = stack[-1]
stack.pop()
h = heights[mid]
if len(stack)>=1:
# 找右边更矮的高度
right = stack[-1]
w = i - right - 1
res = max(res,h*w)
stack.append(i)
return res