【算法基础】1.3 二分(整数二分和小数二分)

本文通过两道例题分别讲解整数二分小数二分,其中整数二分更具难度一些。


有单调性一定可以二分,可以二分不一定有单调性。即没有单调性可能也可以二分
二分的本质是:边界! (寻找边界点)

数的范围(整数二分)

题目描述

给定一个按照升序排列的长度为 n 的整数数组,以及 q 个查询。

对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 0 开始计数)。

如果数组中不存在该元素,则返回 -1 -1。

数据范围
1 ≤ n ≤ 100000
1 ≤ q ≤ 10000
1 ≤ k ≤ 10000

在这里插入图片描述

解法

代码1——写两个二分

import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt(), q = sc.nextInt();
        
        int[] nums = new int[n];
        for (int i = 0; i < n; i++) {
            nums[i] = sc.nextInt();
        }
        
        int k, l, r, mid;
        while (q-- > 0) {
            k = sc.nextInt();
            l = 0;
            r = n - 1;
            while (l < r) {
                mid = l + r >> 1;
                if (nums[mid] >= k) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            
            if (nums[l] != k) {
                System.out.println("-1 -1");
            } else {
                System.out.print(l + " ");
                l = 0;
                r = n - 1;
                while (l < r) {
                    mid = l + r + 1 >> 1;
                    if (nums[mid] <= k) {
                        l = mid;
                    } else {
                        r = mid - 1;
                    }
                }
                System.out.println(l);
            }
        }
    }
}

代码2——写一个二分lowBound()

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt(), q = scanner.nextInt();
        int[] a = new int[n];
        for (int i = 0; i < n; ++i) a[i] = scanner.nextInt();
        while (q-- != 0) {
            int t = scanner.nextInt();
            int l = lowBound(a, t), r = lowBound(a, t + 1) - 1;
            if (l == n || a[l] != t) System.out.println("-1 -1");
            else System.out.println(l + " " + r);
        }
    }

    // 求第一个>=t的下标
    public static int lowBound(int[] a, int t) {
        int l = 0, r = a.length;
        while (l < r) {
            int mid = l + r >> 1;
            if (a[mid] < t) l = mid + 1;
            else r = mid;
        }
        return l;
    }
}

讲解

其实题目很简单,就是在每个查询中(总共q个查询,就是q次循环),查找到指定元素的开始位置和结束位置,这里使用二分法来查找。
q次查询的复杂度是O(N),二分查找的复杂度是O(logN)。


在上面的代码中,属于二分精华的有两部分,分别是:
寻找左边界:

 while (l < r) {
     mid = l + r >> 1;
     if (nums[mid] >= k) {
         r = mid;
     } else {
         l = mid + 1;
     }
 }

寻找右边界:

 while (l < r) {
     mid = l + r + 1 >> 1;
     if (nums[mid] <= k) {
         l = mid;
     } else {
         r = mid - 1;
     }
 }

关于二分模板可以查看:https://blog.csdn.net/qq_43406895/article/details/126787887


我们利用模板来进行分析:
左端点:当 mid 位置 < target时,应该向 mid 的右移,当 mid 位置 >= target 时,r 指针变成 mid 就可以了。
右端点:当 mid 位置 > target时,应该向 mid 的左移,当 mid 位置 <= target 时,l 指针变成 mid 就可以了。

数的三次方根(小数二分)

题目描述

给定一个浮点数 n,求它的三次方根。

数据范围
−10000 ≤ n ≤ 10000

在这里插入图片描述

解法

注意这里 l 和 r 的初始值分别是 -100 和 100。

import java.util.Scanner;

public class Main{
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        double n = sc.nextDouble();

        double l = -100;
        double r = 100;

        while (r - l > 1e-8) {
            double mid = (l + r) / 2;

            if (Math.pow(mid, 3) >= n) {
                r = mid;
            } else {
                l = mid;
            }
        }
        System.out.print(String.format("%.6f", l));
    }
}

为什么不能写成double l = -Math.abs(n), r = Math.abs(n);(左右边界初始值)

对于样例:
在这里插入图片描述

即左右边界的绝对值可能是大于 n 的!

写成 double l = -Math.abs(n) - 1, r = Math.abs(n) + 1; 是可行的。

讲解

浮点数二分就简单多了,永远是double mid = (l + r) / 2;r = mid;l = mid;,结果大了就减小r,小了就增大l。

值得注意的是,while(l < r)变成了while (r - l > 1e-8),这是因为浮点数的计算精度误差导致的。


相关链接
【算法】二分查找经典模板

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wei *

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值