
深度学习
文章平均质量分 69
Wei *
这个作者很懒,什么都没留下…
展开
-
Deep Learning Papers Reading Roadmap
The roadmap is constructed in accordance with the following four guidelines:You will find many papers that are quite new but really worth reading.I would continue adding papers to this roadmap.[0] Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. “De原创 2023-06-27 00:59:55 · 857 阅读 · 0 评论 -
K-D树的Python实现
"""K-D Tree实现了构建和检索author:小威"""from __future__ import print_functionimport heapqimport mathclass KDNode(object): """节点""" def __init__(self, data=None, left=None, right=None, axis=None, sel_axis=None, dimensions=None):原创 2021-01-23 15:52:17 · 451 阅读 · 0 评论 -
深度学习-【语义分割】学习笔记2 转置卷积(transposed convolution)
转置卷积起到上采样的作用。它不是卷积的逆运算;转置卷积也是卷积。原创 2023-03-17 16:58:09 · 581 阅读 · 0 评论 -
深度学习-【语义分割】学习笔记4 膨胀卷积(Dilated convolution)
例如,在VGG网络中,通过max pooling层进行池化,这降低了特征图的高度和宽度,也丢失了一些细节信息,而丢失的信息无法通过上采样进行还原,在语义分割任务中将导致分割的效果不理想。这就是gridding effect现象,即layer4上的一个像素并没有利用到这个范围内所有像素点的信息,而是有间隔的。利用膨胀卷积,既能增大感受野,又能保持输入输出特征图的高和宽不发生变化,解决了上述问题。与实验一不同的是,第一个膨胀卷积的膨胀因子为1,也就是普通卷积。左边是普通卷积,右边是膨胀卷积。原创 2023-03-03 11:04:04 · 1116 阅读 · 2 评论 -
Windows安装TensorRT
本文将介绍Windows如何安装TensorRT。Windows安装Pytorch+CUDA环境。原创 2023-01-10 20:09:10 · 1074 阅读 · 1 评论 -
Windows安装Pytorch+CUDA环境
本文将介绍使用 conda 创建Python虚拟环境,安装Pytorch和CUDA依赖。原创 2023-01-10 13:52:02 · 1551 阅读 · 1 评论 -
Pytorch模型转成onnx并可视化
本文介绍 pth 模型转为 onnx 模型、使用 onnx 模型进行可视化以及过程中可能出现的问题。原创 2023-01-03 22:00:48 · 2570 阅读 · 2 评论 -
神经网络的学习率如何选择?
之所以上面的方法可以work,因为小的学习率对参数更新的影响相对于大的学习率来讲是非常小的,比如第一次迭代的时候学习率是1e-5,参数进行了更新,然后进入第二次迭代,学习率变成了5e-5,参数又进行了更新,那么这一次参数的更新可以看作是在最原始的参数上进行的,而之后的学习率更大,参数的更新幅度相对于前面来讲会更大,所以都可以看作是在原始的参数上进行更新的。首先我们设置一个非常小的初始学习率,比如1e-5,然后在每个batch之后都更新网络,同时增加学习率,统计每个batch计算出的loss。原创 2023-01-01 19:41:56 · 4314 阅读 · 0 评论 -
解决Error(s) in loading state_dict for *** :
strict=)True的话就要求训练权重层数的键值与新构建的模型的权重层数名称完全符合,(strict=)False就没有这个要求了。使用ide(这里是vscode)的debug功能,查看一下newckpt中的内容,如下。可以看出内容和报错信息极其相似,然而字典中每个键前面都多了一个"module"。希望读者可以举一反三,通过debug,依据自己的报错信息来进行对应的修改。因此,抓住本质,只需要修改一些checkpoint中键的名字就好了。这篇与我类似,但他是少了个"module",所以要补上。.....原创 2022-07-26 15:37:14 · 3347 阅读 · 1 评论 -
Detectron2入门代码教程——以Faster RCNN在自定义数据集上目标检测为例
Detectron2是FacebookAIResearch的下一代库,提供最先进的检测和分割算法。它是Detectron和maskrcnn-benchmark的继承者。它支持Facebook中的许多计算机视觉研究项目和生产应用。简单来说,Detectron2是一个提供了简单的快速实现Facebook中的许多计算机视觉研究成果的框架。想要看看具体支持哪些成果可以看看他们的ModelZoo,以及github仓库。本文将以搭建完成目标检测Detection为例,数据集使用更加具有泛用性的自定义数据集。......原创 2022-07-18 20:30:12 · 2555 阅读 · 0 评论 -
WIDER FACE转为COCO数据集格式标注
WIDER FACE是一个人脸数据集,COCO是一个目标检测数据集。目前由很多针对COCO数据集格式的代码,因此将WIDER FACE的标注文件转换成COCO标注格式可以很方便的应用现有代码。下面给出两个数据集的相关网址:WIDER FACE: A Face Detection BenchmarkCOCO我们需要准备两样东西:和,都可以在WIDERE FACE网站上进行获取,如下图所示。从上到下依次是训练、验证、测试集图片和标注文件,最后一个是提交格式示例,不需要管。这一步,我下载了上面的三个文件原创 2022-07-13 18:00:58 · 1476 阅读 · 1 评论 -
《动手学深度学习》实用程序类
class Timer: #@save """记录多次运行时间。""" def __init__(self): self.times = [] self.start() def start(self): """启动计时器。""" self.tik = time.time() def stop(self): """停止计时器并将时间记录在列表中。""" self.times.a原创 2021-11-15 00:00:00 · 512 阅读 · 0 评论 -
03安装|动手学深度学习v2
拿到一台空的ubuntu机器。更新一下软件列表sudo apt updateUbuntu缺省情况下,并没有提供C/C++的编译环境,因此还需要手动安装。但是如果单独安装gcc以及g++比较麻烦,幸运的是,Ubuntu提供了一个build-essential软件包。也就是说,安装了该软件包,编译c/c++所需要的软件包也都会被安装。因此如果想在Ubuntu中编译c/c++程序,只需要安装该软件包就可以了。sudo apt install build-essential安装Python,这里选择3原创 2021-10-25 14:45:16 · 198 阅读 · 0 评论