文章目录
摩尔投票法介绍
摩尔投票法的核心思想是:
对抗 + 计数。
例题
169. 多数元素(寻找数量大于 n/2 的元素)
https://leetcode.cn/problems/majority-element/
解法1——Boyer-Moore 投票算法
维护一个众数 ans 和它出现的次数 cnt。
初始时 ans 为任意值,cnt 为 0。
枚举数组中的每个数:
如果当前 cnt = 0,先将当前数字设置成 ans。
随后判断当前数字 x 与众数 ans 之间的关系,如果相等—— cnt++ ;否则 cnt–;
class Solution {
public int majorityElement(int[] nums) {
int ans = -1, cnt = 0;
for (int num: nums) {
if (cnt == 0) ans = num;
cnt += num == ans? 1: -1;
}
return ans;
}
}
其它解法
其余解法可见:https://leetcode.cn/problems/majority-element/solutions/146074/duo-shu-yuan-su-by-leetcode-solution/
229. 多数元素 II(找到所有数量大于 n/3 的元素)⭐
https://leetcode.cn/problems/majority-element-ii/description/
核心思想——三个不同的数字一组消掉
上道题是两个不一样的元素对抗一次。
这道题是三个不一样的元素作为一组对抗一次。
三个不一样的元素一起对抗可以保证数量 > n / 3 的元素一定会被剩下。
代码——两阶段:先对抗,再计数确认
总的来说,处理新元素 num 的逻辑应该是:
- 如果 num 等于 num1 或 num2,增加对应的计数。
- 如果 num 不等于 num1 和 num2,且 cnt1 或 cnt2 为0,更新对应的 num1 或 num2 并将计数设为1。
- 如果 num 不等于 num1 和 num2,且 cnt1 和 cnt2 都不为0,将 cnt1 和 cnt2 都减1。
class Solution {
public List<Integer> majorityElement(int[] nums) {
// 对抗阶段
int a1 = (int)1e9 + 1, a2 = (int)1e9 + 1, cnt1 = 0, cnt2 = 0;
for (int num: nums) {
if (num == a1) ++cnt1; // 是第一个元素
else if (num == a2) ++cnt2; // 是第二个元素
else if (cnt1 == 0) { // 选择第一个元素
a1 = num;
++cnt1;
} else if (cnt2 == 0) { // 选择第二个元素
a2 = num;
++cnt2;
} else { // 这三个元素均不相同,则互相抵消一次
--cnt1;
--cnt2;
}
}
// 计数阶段(看看剩下的元素是否真的 > n / 3)
int c1 = 0, c2 = 0;
for (int num: nums) {
c1 += num == a1? 1: 0;
c2 += num == a2? 1: 0;
}
List<Integer> ans = new ArrayList<Integer>();
if (c1 > nums.length / 3) ans.add(a1);
if (c2 > nums.length / 3) ans.add(a2);
return ans;
}
}
相关题目列表
面试题 17.10. 主要元素
https://leetcode.cn/problems/find-majority-element-lcci/description/
注意这道题没有保证一定存在主要元素。
class Solution {
public int majorityElement(int[] nums) {
int ans = -1, cnt = 0, cnt2 = 0;
for (int num: nums) {
if (cnt == 0) ans = num;
cnt += ans == num? 1: -1;
}
for (int num: nums) {
if (ans == num) cnt2++;
}
return cnt2 > nums.length / 2? ans: -1;
}
}