Drift plus penalty 漂移加惩罚Part2——性能分析

正文

Performance analysis

本节将展示该算法的结果,该算法的平均时间惩罚在最优性的 O ( 1 / V ) O (1/V) O(1/V)以内,并且在平均队列大小上有相应的 O ( V ) O (V) O(V)权衡。

Average penalty analysis 平均惩罚分析

在这里插入图片描述

Average queue size analysis 平均队列大小分析

在这里插入图片描述

Probability 1 convergence

在这里插入图片描述

Application to queues with finite capacity

在这里插入图片描述

Treatment of queueing systems

在这里插入图片描述

Convex functions of time averages

在这里插入图片描述

Delay tradeoffs and related work

在这里插入图片描述

Extensions to non-i.i.d. event processes

在这里插入图片描述

Extensions to variable frame length systems

在这里插入图片描述

Application to convex programming

在这里插入图片描述

Drift-plus-penalty algorithm for convex programming

在这里插入图片描述

Drift-plus-penalty algorithm for linear programming

在这里插入图片描述

参考资料

https://en.wikipedia.org/wiki/Drift_plus_penalty

### 关于Lyapunov Drift Plus Penalty Framework 在处理网络优化和资源分配问题时,Lyapunov漂移惩罚框架提供了一种强大的工具来管理系统的稳定性和性能目标。该框架的核心在于通过最小化所谓的“漂移惩罚”,即系统状态的二次矩变化上即时成本或约束违反的成本。 假设存在一个队列长度向量 \( Q(t) \),其表示时间 t 的系统状态,则定义 Lyapunov函数 L(Q(t)) 为所有队列长度平方之和的一半: \[ L(Q(t)) = \frac{1}{2} \|Q(t)\|^2 \] 其中 \( \|.\| \) 表示欧几里得范数。对于任意两个连续的时间点 t 和 t+1 ,可以计算出Lyapunov漂移 ΔL 如下所示: \[ \Delta L = E[L(Q(t+1))-L(Q(t))] \] 为了确保长期平均成本不超过给定阈值的同时保持系统稳定性,引入了额外项 P(t), 称作惩罚项,它反映了对某些特定事件发生的期望代价。因此,在每一步决策过程中应考虑如下表达式的上界最小化[^2]: \[ B + E[\Delta L + V\cdot P(t)] \] 这里V是一个正权重参数用来平衡两者的重要性;B 是一个有限常数使得上述不等式成立。当选择适当的动作以使这个组合指标尽可能小时,就可以实现既控制瞬态行为又维持稳态特性的目的。 值得注意的是,此方法允许算法设计者灵活调整不同方面之间的权衡关系——比如响应速度与收敛精度之间、短期效益同长远规划间的取舍等等。而且由于只依赖本地信息来做决定,所以非常适合分布式实施环境下的应用场合。 ```python def lyapunov_drift_plus_penalty(queue_lengths, action, v_weight=1.0): """ 计算并返回指定动作后的Lyapunov漂移惩罚值 参数: queue_lengths (list): 当前各队列长度列表 action (): 执行的具体操作 v_weight (float): 权重因子,默认设为1 返回: float: 动作执行后的新Lyapunov漂移惩罚估计值 """ # 假设我们有一个模拟器能够给出采取action之后的状态转移情况以及相应的立即奖励/惩罚p_t next_queue_lengths, immediate_cost = simulator(action) current_lyapunov_value = sum([q ** 2 for q in queue_lengths]) / 2. future_lyapunov_expectation = sum([(nql)**2 for nql in next_queue_lengths]) / 2. delta_L = future_lyapunov_expectation - current_lyapunov_value return delta_L + v_weight * immediate_cost # 使用样例 queue_state = [5, 7, 9] # 初始队列状态 selected_action = "some_action" result = lyapunov_drift_plus_penalty(queue_state, selected_action) print(f"The estimated LDPP value after taking {selected_action}: ", result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wei *

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值