论文基本信息
《Energy Adaptive Collaborative Charging Scheduling for Wireless Rechargeable Sensor Networks》
《无线可充电传感器网络的能量自适应协同充电调度》
摘要
本文提出了一种具有能量适应性的动态协同充电调度机制。该机制集成了定期和按需充电调度,提高了网络的充电稳定性和能量适应性。首先基于最小连接主导集(MCDS)构建网络核心传感器节点,确定数据转发路径,并基于其设计了传感器节点重要性权重的评价方法。接下来,我们使用分层聚类算法,基于网络拓扑结构建立充电组,并确定可以同时充电的传感器节点的集合,提高了充电位置的合理性。接下来,我们设计了一种均值转移和分层聚类算法的混合算法,将充电组聚类到充电区,保证了每个充电区传感器节点的紧凑性和充电负荷分布的平衡。在此基础上,我们设计了一种周期性和按需充电调度的集成机制:当传感器节点处于高剩余能量状态时,我们根据充电组和充电区域实现周期性的带向协同充电调度,以确保网络性能的稳定性;另外,我们构建了基于传感器节点重要权重和剩余生存时间的混合充电优先级分配机制,并根据该机制实现按需竞争协同充电调度,保证了充电过程的能量适应性,降低了网络性能退化率。最后,我们通过大量的仿真验证了我们的工作的性能优势。
1.引言
无线传感器网络(WSNs)[1]作为一种新型的物联网(IoTs)技术,能够自动、持续地感知和收集环境信息,自诞生以来就引起了人们的广泛关注。随着研究的不断深入,其应用领域已扩展到许多与人类生活密切相关的重要领域。例如,他们已经是应用于智能农业[2]、智能医疗[3]、智能家居[4]、灾害监测[5]等,并取得了很好的应用效果。然而,由于电池容量有限,传感器节点的能量耐久性还没有得到可靠的保证。如果一个传感器节点耗尽了它的能量,它就会“死亡”。网络将存在一系列性能下降问题,如传感孔和传感器导致的数据传输效率下降节点死亡。因此,如何延长无线传感器网络的使用寿命一直是该领域的一个热点问题。随着无线电力传输(WPT)技术的快速发展,可以远程和可靠的大量的能量传输基于无线充电信号,为无线sn的能源瓶颈问题提供了一个新的解决方案,然后得到无线充电传感器网络(WRSNs)[6]、[25]、[26]、[27]、[28]。
根据充电器的移动性,wrsn可分为静态充电和移动充电。在静态充电时,充电器的位置保持固定。因此,静态充电通常以选择充电器的最佳放置位置作为其研究目标,即在充电器数量有限的情况下,如何选择合适的放置位置,以确保传感器节点的充电覆盖。另一方面,移动充电倡导者在wrsn中部署移动充电器(MCs),并使用WPT技术为传感器节点提供充电服务。在移动充电中,充电位置的选择、充电路径的规划、充电优先次序的分配以及多个mc之间的协作机制是其主要的优化对象。这些都有助于提高wrsn的充电效用,延长其使用寿命。
具体来说,移动充电可以进一步分为定期充电调度和按需充电调度。定期充电调度主张MCs应沿着固定的充电路径进行巡航,对传感器节点进行充电;按需充电调度主张为传感器节点设置能量预警阈值。当一个传感器节点的剩余能量低于警告阈值时,它会向MCs或基站(BS)发送一个充电请求。此时,mc根据预警传感器节点的剩余能量、距离等因素,动态规划充电路径,提供按需充电服务。
定期充电调度的优点是能有效保证传感器节点的供电水平,保持网络性能的稳定性;其缺点是MCs需要连续巡航工作,能耗高。此外,周期性充电调度的充电路径一般都是不可改变的,难以应对网络某些区域能耗的急剧增加。
按需计费调度的优点是,MCs只有在接收到充电请求时才会开始工作,因此总能耗低于定期充电调度。此外,MCs可以根据空间和时间因素动态调整充电路径,灵活、动态。其主要缺点是不能可靠地保证充电请求队列的可调度性,因此其保持网络性能稳定性的能力弱于周期性充电调度。
据我们所知,目前wrsn的研究工作主要存在以下不足:
- 定期收费调度与按需计费调度之间几乎没有有效的集成机制。目前的研究工作只对其中一种进行单独研究,缺乏有效整合它们的充电调度机制。如上所述,两者都有明显的缺点。因此,现有的研究工作受到其自身固有的性能缺陷的制约,无法达到理想的充电效果。
- 在现有的研究工作中,存在着一个普遍的高移动开销问题。造成这种现象的原因有很多。例如,一些工作采用了单节点充电的充电模式,导致充电点数量过多,导致充电路径长度较长。此外,由于协同充电机制的性能有限,导致不同mc之间的调度冲突和充电负荷分布不平衡,也会产生额外的移动开销。过多的移动开销不仅会浪费网络能量,还会降低传感器节点的存活率。
- 对核心传感器节点的保护能力不够强。现有的研究工作大多集中在提高网络的整体充电性能上,而没有设计一种特殊的核心传感器节点保护机制。在wsn中,位于BS周围和网络主干数据传输路径中的传感器节点将比普通的传感器节点发挥更大的作用。除了感知它们的覆盖区域外,他们还承担着数据中继的任务。我们称这种传感器节点为网络的核心传感器节点。如果核心传感器节点死亡,由其中继的传感器节点的数据传输也会受到影响,进一步导致网络性能下降。
在分析了现有工作的不足后,我们以保持网络性能的稳定性和延长网络寿命为最终目标,提出了一种将充电位置选择
优化、充电路径规划
优化和充电协同
优化为一体的综合充电调度优化机制。我们的贡献主要包括以下内容:
- 设计了一种适应网络拓扑结构的传感器节点重要性评估机制。我们首先用MCDS构造数据传输路由。在此基础上,根据数据中继关系设计了传感器节点的重要性评价机制,可以反映每个传感器节点中继的传感器节点数量。
- 设计了一种新的适应网络拓扑结构的充电组划分算法,提高了充电位置的合理性。根据MCDS的接近性,我们使用分层法聚类算法将可以同时充电的传感器节点集划分为一个充电组。我们的方法可以保证每个充电组中传感器节点的接近和同时充电,提高充电速度,减少充电位置的总数,缩短充电路径的长度。
- 设计了一种新的带向协同充电机制,提高了网络负荷分配的合理性。我们将包括BS的直接相邻传感器节点在内的充电组划分为一个特定的充电区,并指定一个专用的MC进行充电。对于剩下的充电组,我们设计了一个混合算法的均值和分层聚类划分充电区域,使用网络拓扑信息来确保充电负荷分布的平衡和传感器节点的紧凑性在每个区域,减少网络的移动开销。
- 设计了一种新的定期和按需充电调度的集成机制,保证了充电的稳定性和动态适应性。在网络中没有报警传感器节点的情况下,我们建议采用定期充电调度,沿解决各区域旅行商问题(TSP)产生的充电路径对传感器节点充电,减少移动消耗,保持网络的稳定性;另外,设计一种混合充电优先级计算方法,考虑报警传感器节点的重要性,动态调整MCs的充电路径,减少传感器死亡的负面影响,延长网络寿命。
本文的其余部分结构如下:第二部分介绍了本文的相关工作;第三节介绍了网络模型和相应的假设,并提出了本文的研究问题和优化目标;第四部分详细介绍了我们的收费方案;第五部分通过仿真验证了我们工作的性能优势;第六部分总结了论文。
2.相关工作
A. PERIODIC CHARGING 周期性充电
定期充电调度主张为MCs规划固定的充电路径,而MCs定期沿着充电路径巡航,为传感器节点充电。为了减少充电路径的长度,周期性充电调度通常将路径规划问题转化为TSP,并选择通过所有充电点的汉密尔顿圆作为最终的充电路径。定期充电调度通常与充电模式和充电位置的选择紧密结合。在单极充电模式下,mc只能在一个充电位置为一个传感器节点充电。此时,定期充电调度需要将每个传感器节点视为一个充电点,并规划最佳的充电路径。例如,Xie等人设计了一个在单极充电模型[7]下的周期调度算法。通过构造通过所有传感器节点的哈密顿循环,实现了使充电路径长度最小化的优化目标。此外,多节点充电模型也可用于定期充电调度。在这种情况下,mc可以在有效充电范围内同时为多个传感器节点充电。通常需要设计一个充电位置选择算法来选择合适的充电点,然后利用这些充电点来规划充电路径。Xie等人通过建立小包络盘(SED)[8],将MCs视为移动的BS。然后,以每个传感器节点为中心,以有效充电距离为半径,划分为圆形充电区域,并选择不同传感器节点的有效充电区域的重叠部分作为充电点。最后,通过构建哈密尔顿圆,实现了多节点充电模型下的周期充电调度。Fu等人也采用了类似的SED结构来选择合理的充电点,以提高充电效率[9]。但Dai等人指出,构建SED结构的计算成本太大。在具有大量传感器节点[10]的大规模wrsn中,这将是不可接受的。Zhang等人提出了一种周期调度算法“PushWait”算法对多个MCs [11]进行协同充电。该算法可以保证一维线性wrsn中带电传感器节点的最大数量。Dai等人提出了一种用于随机事件监测[12]的近似最优充电调度方案。他们主张mc定期沿着固定的充电路径巡航,以最大限度地提高随机事件的监测质量。Hu等人研究了多个MCs [13]的周期充电时间调度和充电路径规划。提出了一种有效的基于时隙的周期充电调度算法,该算法采用细粒度的传感器节点分类机制,防止对足够能量充足的传感器节点进行不必要的访问。为了进一步提高充电效率,他们还提出了一种能够实现多台mc的高效并行充电的充电路径规划算法。
B. ON-DEMAND CHARGING 按需充电
与定期调度的静态调度策略不同,按需计费调度试图根据传感器节点的充电要求实现动态、实时的充电调度。在按需充电调度场景中,网络为传感器节点设置能量预警阈值。当一个传感器节点的能量低于阈值时,它将向BS或mc发送一个充电请求。mc动态调整接收到的充电请求传感器节点的充电优先级,然后动态调整充电路径。例如,他等人提出了一个最近的工作,下一步与抢占(NJNP)按需收费调度算法[14]。NJNP以空间距离为主要调度基础,主张首先为最近的传感器节点提供充电服务,有效地减少了移动开销。NJNP只考虑空间因素,不考虑传感器节点剩余存活时间等时间因素,不能有效保证传感器节点的存活率。Lin等人提出了一种临时空间实时充电调度算法(TSCA)[15]。TSCA可以根据空间距离和剩余生存时间对充电调度路径进行优化,实现最小化传感器死区节点数、最大化网络能耗效率的优化目标。Lin等人设计了一种基于传感器节点剩余能量的双预警机制,并基于该机制[16]设计了一种基于双抢占(DWDP)按需充电调度算法的双预警阈值。DWDP可以提高充电成功率和网络稳定性。钟等人提出了一种实时按需收费调度方案(RCSS)[17]。RCSS充分考虑了充电调度过程中传感器节点能耗的动态变化,并设计了一种自适应充电阈值设置方法,以实现减少传感器死节点数的优化目标。
C. COLLABORATIVE CHARGING 协同充电
协同充电主要是通过优化mc间的合作机制,提高充电负荷分配的平衡性和合理性。目前,协同充电机制主要分为分区式和竞争性协同充电两种类型。分区协同收费的性能主要取决于收费区划分的合理性。如果保证了各区域传感器节点的紧凑性和充电负荷分布的平衡,就会提高网络的充电效率。否则,由于传感器节点死亡或能源利用效率低,网络的整体充电效用将显著下降。Lin等人提出了多辆车辆临时和空间(mTS)区域协同充电调度方案[18]。他们首先划分充电区,然后为每个MC分配一个充电区。在充电区,mc根据充电任务的时间和空间因素来调整充电顺序,以达到提高充电效率的目标。Han等人提出了一种基于非均匀聚类算法[19]的收费调度算法。该方法采用非均匀聚类算法形成传感器节点聚类,然后MCs根据能量需求和传感器节点聚类的距离实现协同充电调度,以实现减少传感器死节点数的目的。
竞争性协作收费倡导者为每个MC定义了一个统一的效用函数,并评估每个MC对同一充电任务的充电效用。一般情况下,会选择使网络总充电效用最大化的负荷分配方案作为最优协同充电方案。Lin等人提出了一种针对按需计费架构(GTCCS)[20]的博弈论协作计费调度方案。GTCCS将充电过程转化为MCs之间的非合作博弈。证明了在mc的充电策略集中存在纳什均衡点。作者设计了帕累托优化协同充电方案。Lin等人研究了具有动态拓扑结构的WRSNs充电调度问题。他们将该问题建模为传感器节点之间的合作博弈,并提出了一种合作博弈理论收费调度(CGTCS)算法来构建最优联盟结构[21]。他们还设计了一种自适应最优联盟结构更新(AOCSU)算法来更新最优联盟结构,并实现了响应网络拓扑结构动态变化的优化目标。
3.PRELIMINARIES 准备工作
A. DEFINITIONS AND NOTATIONS 定义和符号
为便于阅读,本文中使用的符号如表1所示。
B. NETWORK MODEL 网络模型
如图1所示,我们的WRSN由三部分组成:N个传感器节点(S = s1,s2,…,sN)随机部署在2D平面区域,可以从MCs远程接收能量。他们监控自己的感知区域,并将收集到的数据逐跳发送到BS。此外,他们还可以估计他们的能耗率和剩余能量,获得他们的位置坐标,并将这些信息报告给BS。同时,Wmc在网络中巡航,为传感器节点提供充电服务。它们可以通过WPT技术将能量远程传输到传感器节点。而且他们也可以估计他们剩余的能量,当他们的能量耗尽时返回实验室去补充能量。最后,在网络中心部署一个BS,主要负责接收传感器节点传输的数据,为mc提供快速的能量补充服务(如电池更换等),确定数据转发路径,并调度MCs,以有效地为传感器节点充电。我们还假设MCs和BS可以通过长途无线电相互通信,这使MCs能够获得传感器节点和其他MCs的状态信息。
C. CHARGING MODEL 充电模型
我们假设mc采用多节点充电模型,这意味着它们可以同时为其充电范围内的所有传感器节点进行充电。充电功率可以用Friis的自由空间公式表示如下:
其中p(lj,si)为MC在传感器si位置lj充电时的充电功率,d(lj,si)为MC与传感器节点的距离;R为MC的最大充电半径,α和β为分别是量化硬件和周围环境对充电信号影响的两个参数。
在此基础上,我们可以得到充电过程的传输能量如下:
式中,Tj为充电位置lj的总传输能量,NSj为当MC保持在位置lj时,位于充电范围内的传感器节点的集合。Oi j是传感器节点si从MC接收到的能量。如果si在mc到达之前死亡,则不能被它们充电,其接收的能量为0。否则,接收到的能量将是电池容量B和传输能量p(lj,si)tj的最小值。很明显,任何传感器节点都不应该被过度充电,否则,多余的能量将会被浪费。
D. PROBLEM FORMULATION 问题定式化
如上所述,传感器节点通过多跳来传输所感知到的数据。在这种情况下,由于数据中继任务,主节点中继节点会消耗更多的能量,因此它们比其他普通节点更有可能失败。更糟糕的是,它们的故障不仅会减少覆盖范围,还会导致网络断开,从而严重影响wsn的应用效果。因此,我们以保证主链传感器节点的存活率作为我们的充电调度方案的主要最优目标。另一方面,我们也力求在骨干节点不失效的情况下提高普通节点的存活率,从而保证了网络的应用效果。具体来说,我们使用公式(4)来描述我们的最佳目标:
在公式(4)中,ui表示si的重要权重,它等于它中继的传感器节点数。Xi是指示si是否死亡的指示变量。CU是我们的充电效用函数,它反映了充电调度方案的合理性:如果网络是可调度的,我们寻求保存所有的传感器节点,避免网络性能下降;否则,我们寻求保存高贡献的传感器节点,最小化网络性能下降的程度。
4.PROPOSED SCHEME 拟议方案
我们的充电方案主要由三个部分组成:建立充电组,可以提高充电位置的合理性,降低移动成本和传感器节点充电等待时间;当没有预警传感器节点时,在网络中采用静态定期充电调度。它可以保证网络运行的稳定性,提高能源利用效率;动态按需充电调度,即在出现报警传感器节点时使用。它用于动态调整传感器节点的充电优先级和充电负荷分布,以提高网络的能耗适应性。
A. ESTABLISHING THE CHARGING GROUPS 建立充电组
充电组表示传感器成员可以同时充电的传感器节点集合。建立充电组有助于缩短充电时间,使mc能够对更多的传感器节点进行充电。因此,我们首先建立了充电组,以选择合理的充电位置。
我们将网络建模为一个图G =(S,E),其顶点集是传感器节点集S,边缘集E表示所有可以通过一跳数据传输相互通信的传感器节点对。然后构建网络的MCDS [22],并选择其成员作为骨干传感器节点。并且,数据沿着由主干节点组成的路径进行传输。在此基础上,我们提出了算法1来建立充电组。
在算法1中,我们首先将每个主干节点初始化为一个独立的充电组。由于MCDS的邻接属性,在大多数情况下,主导节点可以同时充满主导节点。因此,我们将每个非主干传感器节点指定到最近的主传感器节点来扩展充电组。之后,我们开始测量不同充电组的同时充电能力,并合并同时充电组。这样,我们就可以根据网络拓扑信息建立充电组。mc可以在每个充电组内选择一个充电位置,同时对成员进行充电,从而提高充电效用,显著缩短充电时间。
B. STATIC PERIODIC CHARGING SCHEDULING 静态定期充电调度
第一个问题是建立一个有效的协同收费机制,以避免不同mc之间可能存在的调度冲突。在进行定期充电调度时,我们提倡将网络划分为多个充电区域,并基于这些区域协同分配充电任务。由于充电位置将在充电组内选择,所以我们将充电组视为虚拟节点,并将其划分为充电区。如算法2中所述,我们使用均值位移算法和层次聚类算法的混合算法来划分充电区域。
算法2输入充电组(GH)的中心坐标和MCs的数量(W),并输出所划分的充电区。它首先将其成员是BS的邻居的充电组划分为一个单独的充电区。如上所述,这些充电组中的传感器节点是网络的核心节点,它们将比其他节点承担更多的数据中继任务。因此,我们将它们划分为一个单独的充电区,并分配特定的mc来充电,这可以确保他们的高能源供应水平。然后算法2采用均值位移算法对充电组进行聚类,该算法将根据传感器节点的密度来划分初始充电区域。然后对每个充电区的规模进行评估,并尝试合并相邻的充电区,扩大充电区,以保持适当的充电规模。这样,我们就可以减小每个充电区的传感器节点间距,有利于减少移动能耗和充电等待时间。
一般来说,充电等待时间与传感器节点的成活率成反比。因此,我们的分区方案更有利于充分发挥mc的充电能力,有效地提高传感器节点的存活率。如式(4)所述,提高传感器节点的存活率相当于使用Xi = 1增加传感器节点的比例,因此这也符合我们的优化目标。
在划分了充电区后,我们在每个充电区部署一个MC来处理相应的充电任务。这样,就可以有效地保证充电负荷分配的合理性。
另一个需要解决的问题是充电路径规划问题。在我们的周期性充电调度场景中,传感器节点的剩余能量是足够的。此时,我们的主要目标是降低充电过程中的移动成本,即减少充电路径的长度。为了实现这一目标,我们提倡通过求解TSP并选择最短的TSP路径作为每个区域内的充电路径来生成充电路径。
在确定充电路径后,每个充电区域的mc将周期性地沿着它们完全巡航沿着路径向传感器节点充电。图2给出了我们的定期收费调度的一个例子。如图2所示,传感器节点被划分为5个充电区,我们在每个充电区部署一个MC。mc会定期沿着TSP路径移动,以完成充电任务。可以看出,我们的充电机制有两个明显的优势:首先,我们将网络的核心传感器节点划分为一个单独的充电区,并部署一个专用的MC进行充电。从而可以严格保证核心传感器节点的充电优先级。其次,可以尽量降低充电过程的移动成本。当传感器节点处于高剩余能量状态时,降低移动能耗应该是充电计划的主要目标。这不仅使MC有更多的能量为传感器节点提供充电服务,而且有助于减少整体充电等待时间。
C. DYNAMIC ON-DEMAND CHARGING SCHEDULING 动态按需收费调度
首先,我们为传感器节点设置了一个一致的能量警告阈值。如果传感器节点的剩余能量低于阈值,则主动向MCs发送充电请求,包含剩余寿命ei、组ID gi和充电组的总重量ugi。此时,网络进入紧急模式,这通常是由能源消耗率的急剧上升引起的。
为了节省报警传感器节点的剩余能量,我们指定传感器节点只向其充电区的MC发送充电请求。当某些请求无法调度时,它们将通过长途无线电转发给其他mc:
当mc收到充电请求时,它们会中断定期调度模式,并启动按需调度模式。如算法3中所述,每个MC维护一个请求队列,以存储由警告充电组发送的充电请求。对于每个警告组,MC将根据公式(7)计算混合充电优先级,并选择具有最小混合优先级的充电组gmin作为候选人的下一个充电目标。然后根据公式(8)和(9)来判断gmin的可调度性。如果它是可调度的,gmin将是下一个充电目标,MC将其从其请求队列中删除。否则,它将被转发到其他mc来保存它。
当接收到其他充电区域的外部充电请求时,mc将中断定期充电,并根据算法3中描述的混合优先级开始调度充电请求。在这种情况下,多个mc可能会竞争相同的充电任务。为了避免调度冲突,我们提出了算法4来处理不同mc之间的协同调度问题。如算法4所示,对外部充电请求进行充电的第一个要求是,MC的局部充电区域没有任何发送充电请求的紧急传感器节点。然后,mc评估外部充电请求的可调度性,只有满足可调度性条件的mc参与充电请求的竞争。具体来说,每个MC将计算出充电请求的最早充电时间,充电时间最早的一个将获得相应组的充电权。
最后,需要注意的是,当按需收费请求队列为空时,相应的MC将返回到以前的定期调度模式。为了减少移动开销,它将从最后一个充电组恢复定期调度模式充电模式是根据之前的定期充电路径进行的。
D. ANALYSIS 分析
首先,我们的充电组划分算法可以有效地提高充电过程中的充电效率。如式(3)所述,传输的能量是MC在特定充电位置可以传输到传感器节点的能量的和。因此,提高可以同时充电的传感器节点数也会提高充电效率。由于我们的充电组划分算法可以保证每个充电组成员的同时充电,因此它可以有效地指导mc选择合理的充电位置,显著提高了网络的充电效率。
其次,我们的带向协同调度机制可以有效地减少mc的移动开销,确保核心传感器节点的存活率。一方面,我们的充电区划分算法可以有效地减小每个充电区传感器节点之间的间距,从而降低mc的移动能耗。另一方面,我们的周期充电调度算法的充电路径是通过选择最短的TSP路径来生成的,这可以保证它们的长度最短。因此,我们的带向周期充电调度算法不仅能节省mc的能量,而且还能有效地减少传感器节点的充电等待时间,有利于提高传感器节点的存活率。此外,我们的分区算法还为核心传感器节点划分了专用充电区,并部署了专用的MC,以确保其存活率。这对于保持网络性能的稳定性具有重要意义。
第三,当网络的某些区域的能耗率急剧上升时,我们的调度方案可以调整到按需调度,以自适应地处理这种情况。一般来说,能耗率的急剧上升通常是当某些事件发生时,附近的传感器节点会通过多个数据包继续传输所感知到的信息。沿着数据传输路径的传感器节点将成为需要先充电的报警传感器节点。我们的按需充电调度算法以传感器节点的重要性权值和剩余的生存时间作为充电优先级分配的主要基础。在我们的充电方案中,传感器节点的重要性权值是它提供中继服务的传感器节点的数量。因此大的重要性权重传感器节点与较少的剩余生存时间很可能是属于当前活动数据传输路径,即,我们的按需充电调度算法有很高的概率调度MCs充电传感器节点在当前数据传输路径。一方面,由于大重要权重传感器节点优先充电,可以降低网络的整体性能退化。另一方面,它可以减少额外的移动开销,因为由它产生的充电路径很可能是数据传输路径。因此,我们的按需调度策略在给定的网络条件下是最优的。
同时,我们还可以用“M/M/W/N”排队理论模型对按需充电过程进行建模。设μ为MCs的平均充电速度,Wμ为我们网络的总充电速度,λ为充电请求的生成速度。当ρ = W λ μ < 1时,网络处于稳定状态,必须是可调度的。否则,一些传感器节点必须等待队列中的mc。设Pn表示有n个警告传感器节点等待mc按需充电的状态。我们可以得到系统状态概率的平衡方程如下:
这里的Pn = 1,按需充电过程的状态概率可以从递归关系中得到:
预期的等待队列长度Lq可以得到如下结果:
网络损失的概率为:
5.仿真结果
在本节中,我们分别模拟了我们的定期充电调度算法和按需充电调度算法,以验证它们的性能优势。每个模拟结果是100次重复模拟的平均值。
A. PERIODIC CHARGING SCHEDULING 定期充电调度
在这个模拟中,我们比较了我们的定期充电调度算法的能源利用效率和旅程长度与当前的技术。
A.1.能源利用效率
能源利用效率(EUE)是指MCs为传感器节点充电所使用的能量占其总能耗的比例。EUE越高,意味着在充电过程中由于无效运动等因素造成的能量损失越小,有利于提高传感器节点的存活率和网络的充电效用。为了验证我们的周期性充电调度算法的合理性,我们首先比较了分层、PushWait和我们的周期性充电调度算法的EUE,仿真参数如表2所示。
如图3所示,所有算法的EUE均随运行时间呈增长趋势。主要原因是随着网络的运行,传感器节点所需的能量逐渐增加,mc的充电能耗的比例增加。我们可以看到,我们的周期充电调度算法在三种算法中EUE最高。造成这一结果的原因主要包括两个方面:首先,我们的充电组划分机制可以有效地减少mc的充电时间,使其能够选择一个合理的位置,同时为多个节点充电。其次,我们的带向协同充电调度机制可以保证每个充电区传感器节点的紧凑性,有效地降低了MCs的移动能耗,从而提高了我们的周期性充电调度算法的EUE。
A.2. JOURNEY LENGTH .行程长度
行程长度是指MCs根据充电路径运行一个周期的距离。在多节点充电模式下,通常由充电位置选择机制和充电路径规划机制决定。具体来说,充电位置选择机制决定了mc的充电点。一个更好的充电位置选择机制可以减少充电点的数量,从而缩短行程长度。另一方面,充电路径规划机制可以合理规划充电路径中充电点的顺序,从而缩短行程长度。因此,日志长度是一个综合的指标,可以验证我们的充电组划分算法和充电路径规划算法的合理性。我们选择HCCA和NTSP作为比较对象,它们也采用了类似的充电组划分机制和充电路径规划机制。仿真参数如表3所示,仿真结果如图4所示。可以看出,我们的周期性充电调度算法具有最短的行程长度,说明我们的充电组划分机制和充电路径规划机制具有较好的性能,可以减少充电点的数量,提高充电顺序的合理性。
B. ON-DEMAND CHARGING SCHEDULING 按需充电调度
如上所述,我们的按需充电调度主要是为了应对能源的急剧增长一些传感器节点的消耗。在本节中,我们将我们的按需充电调度算法与其他技术在等待队列长度、传感器存活率和充电效用方面进行了比较。需要注意的是,在这个仿真中,我们首先使用周期调度算法对传感器节点进行充电。当接收到警告传感器节点发送的任何充电请求时,mc会切换到按需充电调度模式。同时,其他算法总是采用按需充电调度模式对预警的低能耗传感器节点进行充电。
B.1. WAITING QUEUE LENGTH B.1.等待队列长度
本节分析的第一个充电调度性能指标是等待队列长度,它反映了在充电请求队列中等待充电的传感器节点数。等待队列长度越短,调度算法的充电效率越高。模拟参数与表2中的参数相同,只是我们比较了按需收费调度算法与NJNP算法的等待队列长度。以及mTS算法。仿真结果如图5所示。该算法的等待队列长度最短,说明该算法具有较高的充电效率,并且在相同的条件下可以为更多的传感器节点提供充电服务。
B.2. SENSOR SURVIVAL RATE 传感器存活率
在本节中,我们将比较不同充电算法的传感器存活率。确保高级别的传感器节点生存率是几乎所有充电调度方案的最终目标。仿真参数与等待队列长度模拟的参数相同,图6记录了仿真结果。在图6中我们的按需充电调度算法的传感器成活率明显高于其他两种算法。如上所述,我们的周期调度算法可以在网络能耗稳定的前提下,有效地对每个充电区的传感器节点进行充电。只有在某些地区的能耗急剧增加时,按需充电模式才会被动态激活。因此,在这个比较中,我们的算法需要处理比其他算法更少的收费请求。同时,我们的充电优先级分配机制可以安排mc对传输数据包的充电传感器进行优先级排序,从而确保最佳的充电效果。因此,我们的算法在此比较中具有最高的传感器存活率。
B.3. CHARGING UTILITY 充电效用
充电效用可以由公式(4)得到,这反映了充电调度算法为网络的核心传感器节点提供能量供应的能力。充电效用越高,核心传感器节点的存活率越高,网络性能的下降幅度越小。在这个模拟中,我们比较了我们的按需充电调度算法的充电效用的NJNP和mTS算法。仿真参数与等待队列长度仿真参数相同。从图7中我们可以看出,我们的算法具有最高的充电效用。主要原因包括两个方面:首先,我们的算法具有较高的传感器节点存活率,这意味着较少的网络充电效用损失;其次,我们的算法在分配充电优先级时增加了一个传感器节点的充电效用权重因子,因此我们的算法可以同时考虑剩余寿命和传感器节点的充电效用。因此,我们的算法具有最高的整体充电效用和保持稳定的网络性能的能力。
6.总结
本文提出了一种针对WRSNs的能量自适应协同充电调度方案。首先利用网络拓扑信息构建了基于MCDS的核心传感器节点集和数据传输路径。在此基础上,我们设计了传感器节点重要性权重的计算方法和核心传感器节点的保护机制,有效地避免了由于核心传感器节点的死亡而导致的网络性能的显著下降。此外,通过与定期充电调度和按需充电计划的有效兼容,保证了充电过程的稳定性和对网络突发情况的动态适应性,进一步提高了wrsn的应用效果。我们已经通过完整的仿真来验证了我们的工作的性能优势。仿真结果表明,该工作可以有效地降低网络移动成本和传感器节点的充电等待时间,提高传感器节点的存活率和网络充电效用。