【论文阅读】Optimizing Energy Consumption and Provisioning for Wireless Charging and Data Collection in La

论文基本信息

《Optimizing Energy Consumption and Provisioning for Wireless Charging and Data Collection in Large-Scale WRSNs With Mobile Elements》
《优化具有移动元素的大规模无线充电和数据采集的能耗和配置》

IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 20, 15 OCTOBER 2023

摘要

无线可充电传感器网络(WRSNs)在解决无线传感器网络的能源/使用寿命瓶颈方面具有强大的潜力。最近的技术已经显示了多种移动元素(MMEs)在能源消耗优化方面的有效性。然而,由于基于大型传感器数据系统的大规模wrsn(LS-WRSNs)的出现,节能mms方案出现了新的挑战。因此,由于能源/寿命和传感器节点部署模式的瓶颈,大规模部署目前受到限制。本文提出了一种基于死期限的MMEs(DB-MMEs)模型,利用MMEs方案的有效性来优化能源消耗和供应。DB-MMEs方案利用多功能无线移动充电车(MCVs),通过单跳传输进行无线充电和数据收集。该方案是专门为延迟不容忍的应用而设计的。现有的技术都没有考虑到这种方法来最小化延迟和优化LS-WRSNs场景的能源消耗和供应。该方案首先将传感器组织成多个集群,以进行无线充电和数据收集。为了优化能源消耗和供应,并解决LS-WRSNs场景的能源/寿命挑战,本文提出了基于分析的方法来解决一些关键的权衡,包括: 1)确定mcv的最佳可用的能量量;2)找到在给定期限内部署的最佳mcv数量;3)寻找数据收集和充电点(DCCPs)的最佳数量。最后,通过实验仿真验证了该方法的性能,结果验证了基于分析的方法的有效性。

1.引言

基于磁谐振耦合[1]的无线移动充电的最新进展显示了无线可充电传感器网络(WRSNs)对解决无线传感器网络(WSN)的能量需求的有效性和潜力。wrsn的特点是存在低能量可充电传感器节点(能量接收器)和超能量移动充电车辆(MCVs)或能量发射机(ETs),这些节点被部署用于补充能量不足的传感器节点,以保持连续的网络运行寿命。wrsn的出现带来了使用静态或移动充电器提高充电效率的优势,旨在保证所需的充电及时性,并提高数据的可靠性。部署同样可作为移动数据收集器的mcv有望提高网络性能,包括长寿命[1]连接[2]、[3]和数据传输延迟[4]。本文提出了一种基于期限的多移动元素,称为(DB-MMEs)方案,以便于讨论,在大规模WRSNs(LS-WRSNs)场景中优化无线充电和数据收集的能源消耗和配置。

大多数现有的wrsn的工作主要集中在部署单个移动充电器(MC)[5],[6],[7],也被称为“一对一”充电方案,即传感器在任何给定的时间由单个MC充电。然而,由于可伸缩性和效率的问题,该方案对ls-wrss不可行。在大规模访问中,单个MC无法为每个传感器节点充电。这有可能产生神经回孔和随后的高节点死亡率,从而影响网络操作。其他研究正在考虑多重移动充电(MMC)方案[8]、[9]、[10]、[11]、[12]用于能源供应活动。与单一MC方法相比,多重MC方案具有显著的优势,可以减轻可伸缩性和效率要求的瓶颈。此外,还可以利用MMC方案来优化MC的行程时间和传感器节点的能耗。由于大多数传感器都是低功率的、低内存容量的,因此它们很难长时间保存大量的数据。由于传感器耗尽了它们的记忆容量,进一步的传感可能会受到影响,从而导致周围环境中重要信息的丢失。因此,感知到的数据需要尽快被卸载。在这方面,使用单一MC是不可行的,可能导致大量的延迟。因此,DB-MMEs方法具有几个优势,可以优化延迟时间,特别是在时间关键和延迟不容忍的应用程序中。对于大规模的场景,mcv可以在短时间内遍历整个网络,为传感器充电,并在单跳传输中收集感知数据。

虽然多移动元素(MMEs)方法已经得到了很好的研究,但它尚未在LS-WRSN场景的同时无线充电和数据收集中得到全面的研究。尽管使用mme具有固有的优势,但该方案仍存在几个挑战。例如,尽管总延迟时间可以大大最小化,但仍存在与网络成本和复杂性相关的问题,这就需要在网络成本和延迟之间进行权衡。其他方法还没有解决全面检查影响WRSN中有效无线充电和数据收集的一些关键问题和权衡的需要,其中包括:1)寻找MCVs的最优数据收集和充电点(DCCPs);2)确定每个MCV的最优轨迹;3)在给定的最后期限内确定最优的MCVs的数量;4)将网络划分为更小的DCCPs组,然后为每组分配一个MCV;5)在给定网络总能量的情况下,找到MCV的最佳能量。这些都是需要进一步探索的关键问题和权衡。因此,本文旨在探讨上述影响ls-wrsn高效无线充电和数据收集的关键问题和权衡问题,以提高其运行性能。

我们注意到一些研究已经利用mms进行数据收集[13],[14],[15],[16],[17],[18]和无线充电[10],[11],[19],[20],[21].[22]对wrsn中的移动充电技术进行了全面的调查。然而,没有一个人全面解决了在使用mme的LS-WRSN应用程序中优化无线充电和大数据收集的能源消耗和配置的需要。因此,本文考虑通过解决关键问题和权衡,优化具有DB-MMEs的ls-wrsn中的无线充电和大数据收集的能源消耗和配置。我们考虑到在数据失去意义和无用之前需要及时的能量供应和数据收集,因此,提出了一种新的DB-MMEs方案,使用最优无线充电点(WCPs)和多个mcv在LS-WRSN中同时进行无线充电和数据收集。这种方法本质上可以考虑到不容忍的应用程序。图1显示了所提出的DB-MMEs方案在LS-WRSN中的工作模型。第一个挑战是如何确定MCV的最佳DCCPs,然后以这样的方式分配一些MCV给每个MCV,从而倾向于减少n个MCV的往返时间,从而减少它们的移动能量消耗否则,一些mcv将比其他mcv访问更多的dccp,从而导致参观时间长和高运动能耗。这项工作的重点是一个具有预定位置的集群头(CHs)和最优dccp的网络,这样mcv就不一定需要遍历所有的CHs,而是需要访问某些最优位置以进行数据收集和能源供应活动。

在这里插入图片描述

基于分析的方法和强化学习(RL)技术是两种主要的、可用于数据收集和使用移动元素进行无线充电的方法。基于分析的方法包括使用数学模型来预测系统行为和优化系统性能。这些方法需要系统及其参数的先验知识,可以用于解决可以分析描述的问题。对于使用mme的移动数据收集和无线充电,可以使用基于分析的方法来开发模型,根据诸如mcv的位置、能源的可用性和网络连接等因素来预测充电站或数据收集点(dcp)的最佳位置。与基于RL的技术相比,基于分析的方法提供了一种更好的方法来优化使用移动元件[15]、[23]的大数据收集和传输的能源消耗,并提供了更高水平的准确性和效率。然而,这些方法在适应不断变化的条件或不确定的环境方面的能力上可能受到限制。另一方面,RL是一种机器学习方法,它涉及到一个代理与一个环境进行交互,以学习如何最大化奖励信号。这些技术可用于制定政策,根据实时反馈确定充电站或dcp的最佳位置环境。基于rl的技术的一个主要优点是能够适应变化的条件和不确定的环境,这可以联合优化MCV的充电序列和传感器节点[24]的充电量,并优化MCV [25]的移动路径。尽管基于rl的方法有一些优点,但该技术存在一些挑战,使得其在当前ls-wrsn的大数据收集和无线充电场景中的应用效率较低。这些挑战在[26]、[27]、[28]和[29]中进行了讨论,包括:样本效率问题;稳定性训练问题;灾难性干扰问题;探索问题;系统在感知、驱动或奖励反馈方面的延迟;部分可观察性和非平稳性问题;实时推理挑战;离线RL;等。此外,与基于分析的方法不同,基于rl的技术可能需要更多的数据和计算来学习最优策略。因此,为了优化能源消耗和供应,并解决LS-WRSNs场景中能源和寿命的挑战,本文提出了基于分析的方法来解决关键的权衡。

据我们所知,这是第一个模拟LS-WRSN中传感器节点的基于时间期限的实时数据收集和充电需求的工作。在此基础上,派遣多个MCV去补充能量不足传感器(目标是最小死传感器节点的数量和优化MCV的充电路径)和收集传感器在给定的时间内感知数据的数据变得无用之前,受MCV的约束能量和传感器。

这项工作的主要贡献可以进一步突出如下。

  1. 我们研究了mcv穿越网络进行无线充电和数据收集活动所需的最佳能量量。
  2. 我们考虑所需的最优MCV数量,包括每个MCV的最优轨迹。由于网络复杂性和成本影响的问题,需要设置适当数量的mcv。因此,采用基于分析的技术来确定在给定的时间期限内的mcv的最优值和位置。
  3. 我们考虑了mcv的最佳dccp数量,包括它们的位置、数据收集和给定位置的充电时间,以及收集数据和给缺能量传感器节点充电所需的截止时间。
  4. 对于使用多个MCV的大规模场景,该工作考虑了需要将网络划分为几个有限数量的集群/区域,并使用最优点(OPs)和MCV之间的距离矩阵原则将每个区域分配给一个MCV。

本文的其余部分的结构如下。第二节介绍了系统模型和问题的公式。第三节讨论了建议的工作,而第四节提出了DB-MMEs数据收集延迟的分析。第五节给出了仿真结果和分析,第六节对本文今后的研究工作提出了一些思考意见。

2.SYSTEM MODEL AND PROBLEM FORMULATION 系统模型及问题公式化

本节将介绍我们提出的db-mme模型。

A. DB-MMEs Network Model and Assumptions

在这里插入图片描述

图2显示了我们提出的DB-MMEs系统模型组成的LS-WRSN组N固定可充电传感器节点部署在一组N传感器节点N={N1,N2,N3…,NN}和无线移动充电器M = {M1,M2,M3,…,Mm}。参数如表一所示。我们假设N传感器节点均匀随机分布在一个半径的圆形无线充电传感领域r.整个网络由三个主要参与者,即静态充电传感器节点,多功能无线mcv和基站(BS)如图2所示。该模型假设N个传感器节点分散在形成网络的不同组g和集群c中。这些组在空间上是分开的,其他组无法到达。但是,组成同一组的节点可以被其组中的其他节点访问,并可以在彼此之间进行通信。这个集群的数量预计至少等于网络中的组的数量(即,c≥g)。图2描述了一个由三组g(g1、g2、g3)和五个簇C组成的网络(c1、c1、c2、c3、c4、c5)。两个集群c3和c4有可能有共享的节点。用于数据收集和能量供应的mcv的移动由箭头路径表示。MCV从BS开始旅行,沿着指定的锚点(APs)收集感知数据并为能量不足传感器充电,然后返回BS进行数据卸载、能量补充或电池更换,为另一次旅行做准备。BS作为控制器,根据之前从传感器收到的充电请求,动态调度mcv的能量供应。当传感器的剩余能量低于某一最小阈值时,传感器会发送充电请求。BS维护着有关包括mcv在内的所有传感器的位置、能级、容量和能量耗散率的全球信息。管理员可以使用此信息用于MCV建模,包括其时空调度操作。

该网络模型假设有n个mcv最初部署在一个圆形传感场的中心,面积a和半径R沿x-y坐标在
在这里插入图片描述
其中,m = {1,2,…,n}。我们假设节点均匀分布在一个圆形区域内,其网络密度由

在这里插入图片描述

为了进行分析,我们考虑了一个部署后具有固定传感器节点的模型和et和数据收集器。一个主要的挑战是处理网络划分为多个集群和组的问题,以最小化传感器节点的传输范围,从而优化它们的总能源消耗。为了实现这一目标,我们假设MCV能够足够地了解网络中每个传感器节点的位置,从而能够执行数据收集和能量供应工作为了避免能量孔问题,MCV采用部分充电策略,以满足其能量传输范围内所有能量限制(请求充电)传感器的能量需求,因为不是每个传感器都必须充满充电,因为不同的传感器可能有不同的能量消耗率。

该模型的假设可以进一步强调如下。

  1. 传感器节点和/或CHs随机部署在已知位置,在部署后是静态的。
  2. 每个MCV都是一个超能量的移动充电器,具有多功能功能(如强大的收发器)和较大的存储容量。
  3. mcv知道CHs和OPs的位置,并从BS开始他们的旅程,BS拥有网络信息,并可供mcv使用。
  4. 每个CH都有足够的内存容量来保存在到达OP时传输到MCV的数据。
  5. 当超能量mcv在完成数据收集和充电行程后出现能量受限时,BS有足够的能量库来补充它们。
  6. 传感器的缓冲区溢出时间(CHs)可用于调度mcv的操作。
  7. BS通过为每个mcv找到一条封闭的路线来安排mcv进行数据收集和收费旅行。
  8. MCV的调度是指没有位于两个或两个以上MCV的充电范围内的传感器节点,否则,传感器节点不能被这些MCV同时充电。

B. Energy Model 能量模型

数学上,我们可以用以下方法表示[30],[31]的网络模型的能量耗散:

在这里插入图片描述
其中k表示数据包的大小,r表示发射机和接收机之间的通信范围,r0为阈值,Etx和Erx分别表示数据传输和接收的总能量,Eelec为传感器传输和接收信息所用的无线电电子能量,Eamp表示自由空间中的传输放大器能量,Efs为多径衰落信道模型的因子。

C. Charging Model and Strategy for the MCVs mcv的充电模式和策略

充电模型改编自[32]和[33],描述了传感器节点和无线充电器之间的距离。该模型可以用来计算充电量传感器节点的效率基于

在这里插入图片描述

其中,ci为MCVs的第i个充电点,Gt和Gr分别为发射和接收天线增益,λ为波长,r为传感器节点与MCV之间的功率传输距离,Rmc为MCV的充电半径,Pt为MCV的发射功率,Erci为传感器接收的功率,Lp为偏振损耗,表示整流效率,α为短程传输的调整参数模型。对于短程传输(即,如果r≤Rmc),(5)将[34]简化为

在这里插入图片描述

传感器节点被MCV充电后的能量用[35]表示

在这里插入图片描述
其中,Ej为传感器j充电前的剩余能量,tc为MCV的充电时间,(Erci×tc)为节点j从MCV接收到的能量,E传感器max为传感器的最大存储能量阈值。在我们的模型中,我们使用了Gt = 8 dBi、Gr = 2 dBi、σ = 4.32×10−4、α = 0.2316和Pt = 3 W的值。

在这里插入图片描述

图3为mcv的路径规划和充电穿越策略。为了优化充电效率,该模型考虑了一种适用于LS-WRSN应用的一对多充电方案[7],[8]。这种充电方案允许一个单一的充电器(MCV)与多功能同时为位于集群内通信范围内的多个传感器节点充电的能力。该充电器的多功能功能还支持数据收集和无线充电。一般来说,在充电过程中,MCV可以采用两种方法: 1)周期性方式和2)按需方式对能量不足的传感器[22]、[36]进行充电。与定期充电方案相比,按需充电方案更适合于wrsn的动态特性,如能量驱动的充电请求、不同传感器节点的动态能耗率、可变的充电请求等。

在无线的实际应用中,传感器节点的能耗率动态变化由于许多不确定性,如网络拓扑的频繁变化的可充电传感器节点,传感器节点的死亡,节点的高能耗率多样性,充电请求的不确定性等。因此,周期性充电方案是不可行的,难以满足WRSN的动态特性。本研究考虑了在[25]、[36]、[37]、[38]、[39]、[40]等在线场景中同时进行多节点(一到多)充电方案。这是一个实时多极充电解决方案,按需充电-收费时间表,根据BS通信的充电请求进行优先排序。该方案旨在解决长时间延迟造成的节点故障问题;根据移动的能量消耗和为传感器节点充电的能量消耗来优化mcv的能耗;并解决了大量请求节点导致的可扩展性问题。因此,该方案对LS-WRSNs场景是有效的。在[7]、[8]、[41]、[42]、[43]和[44]中可能会有一些离线充电场景。由于忽略了传感器节点的动态能耗率特性,通常导致充电性能低。

对于每次旅行,MCV从BS,p0开始穿越pi=,p1,p2,…,pn,p0},穿越各种ap进行充电和数据收集旅行,然后返回BS,p0。到达OP后,它会收集感知数据,并对附近缺乏能量的传感器节点进行无线充电,充电时间分别为td和tc。我们假设MCV到ap的移动时间与传感器的充电时间相比可以忽略不计。充电时间,与传感器的电池状态无关。然而,我们关注的是MCV的发展轨迹,因为它可能会招致一些tc,这对于各种ap都是相同的,并且可能是相当大的成本影响。因此,本文考虑了需求驱动的充电策略,即能源供应是基于按需充电策略。因此,首先考虑能量受更大的传感器先于其他能量需求较低的传感器。

3.PROPOSED WORK

我们在此提出了所提出的DB-mme模型的流程图。该方法被用于研究影响高效无线充电的一些关键权衡以及在ls-wrsn中的数据收集。与其他合并这两个阶段的工作相比,我们提出的充电模型被分为两个阶段,即: 1)协调阶段和2)充电阶段。这两个阶段将在后面的段落中分别讨论。图4显示了该模型的流程图,同时显示了协调阶段和数据收集/充电阶段。我们在图中展示了对问题的描述。5和6,分别显示了使用单个MCV和多个MCV的OP选择和路径规划和计算。

在这里插入图片描述

在这里插入图片描述
本研究的一个重要目标是研究mcv的有效协调和充电策略。为了尽量减少传感器之间的充电冲突,BS作为控制器呈现。我们注意到,在没有控制器和适当的协调策略的情况下,传感器节点之间可能会出现充电冲突,特别是对于多个传感器节点同时向MCV发送充电请求,并且对这些请求的响应,由于传感器节点对之前的充电请求的响应,网络的射频(RF)曝光突然上升,超过某些安全阈值。此外,在多个mcv和能量接收器之间缺乏适当协调的情况下,一个充满电的恶意能量接收器可能报告高于阈值的射频值,随后提示mcv显著降低其能量传输速率,从而留下几个传感器节点的能量不足。

就充电策略而言,MCV的一个简单方法是在传感器到达时对传感器充满电,并节省在传感器节点能量耗尽之前重新访问传感器节点所需的大量时间。然而,网络操作是这样的,能量耗散发生在包传输的传感器和MCV的能量供应任务,因此使MCV很难连续向几个传感器节点提供能量,因为它将没有足够的能量来分配。另一种方法是让MCV明智地将其可用的能量分配给几个传感器,以延长网络的使用寿命。这一基本原理表明,MCV可以向节点j提供与其剩余充电能量成比例的能量。简单地说,一个节点可以被一个MCV充电,直到它的能量变成

在这里插入图片描述
其中,EMCV init是MCV最初拥有的可用于给节点充电的总能量,e传感器max是传感器的最大存储能量阈值。我们也知道,如果Etotal表示网络中的总可用能量,则初始值为[11]

在这里插入图片描述

使用组合(7)-(9),我们随机选择40%的Etotal作为MCV的初始能量。结果如图所示。7和8。基本结果表明,我们的部分充电策略比全充电策略更有效率。部分充电策略在产生一定数量的事件后,部分充电策略优于全充电方案。这项调查的含义表明,与部分充电相比,MCV在探索全充电方案时将利用更多的能量来给传感器-节点充电技术因此,MCV的能量耗散得更快,从而导致节点死亡率的增加。

需要研究的一个重要的权衡方法是mcv相对于网络总能量的最佳能量量,Etotal。我们假设Etotal是有限的,并且在所有情况下都保持不变。这将有助于调查MCV充电过程的能源效率的上升。这就定义了MCV最初应该可获得多少能量。式(9)假设增加MCV的能量意味着传感器节点将部分带电,因为网络的总能量合计保持不变。这可能会导致网络操作中的瓶颈。因此,我们通过选择MCV的初始能量为总网络能量的20%、40%、60%和80%,来研究mcv的最佳能量占能量的百分比:

在这里插入图片描述

图8显示了本次调查的结果,显示MCV提供40%的能源以上将对网络运行产生负面影响。这有助于定义最初应该提供给MCV的最佳能量量,以避免传感器节点上的能量饥饿。图8中的一个主要结论表明,对MCV使用中等的百分比的能量是一个好主意,如任意值为20%。

A. Recharge by Adaptive Network Partitioning Scheme 基于自适应网络划分方案的充电

为了有效地覆盖LS-WRSN广阔的地理区域,我们建议采用多个mcv进行无线充电和数据收集。使用多个mcv在可伸缩性和鲁棒性方面具有一些优势。尽管在LS-WRSN场景中调度多个mcv有一些优势,但它也带来了额外的挑战包括成本影响和网络复杂性。为了解决调度多个MCV和优化成本的复杂问题,我们提出了一种自适应网络划分策略,该策略将整个网络划分为多个集群/组,并将每个组分配给一个MCV进行数据收集和充电操作。该方案通过最小化mcv的旅行距离,从而降低WRSN的整体维护成本来降低WRSN的这一目标。提出的方法是一种新颖的方法最少的计算努力,有效地减少计算成本通过考虑两个或两个以上CHs的重叠区域形成操作,mcv将遍历操作而不是访问所有CHs数据收集和能源供应,因此,优化能源消耗和供应和成本的影响。所提出的划分方案还阻止了mcv的长距离移动,从而限制了指定区域内的移动范围。在[45]和[46]中提供的真实场景中,使用分布式聚类方法具有几个优点,包括最小化能源消耗、改善路由连接(即最小化延迟)、在最小化流量的同时增加可伸缩性。由于无线分区收费是np硬的,就像有截止日期的多旅行销售员问题(TSP),我们采用了启发式来解决这个问题。我们简要介绍了自适应划分方案的提出。首先,BS使用[45]中概述的方法定期请求节点的能量状态。然后将网络自适应地划分为q个区域,并将其结果传递给mcv。我们采用众所周知的k均值算法[47]执行网络分区,这允许mcv自适应选择一个子集的传感器节点短距离每个地区的质心(即,节点减少平方和距离的质心的选择)。其目标是最小化mcv的旅行距离,优化能源消耗和供应。这是通过取区域内所有节点的xy的平均值来计算的。节点被分配到其区域的最近的质心。这个位置也可以作为MCV为节点充电的起点。我们的自适应网络划分方案[48]与其对应的小型和ls-wrsn进行了比较,使用评估指标,如能源消耗和延迟。图中。9-11显示了自适应网络划分策略与传统的非划分方案相比的结果。研究结果表明,我们的自适应网络划分方案优于传统的ls-wrsn网络划分方法。然而,非分区方案对于小规模的wsn似乎是有效的。

4.MINIMUM LATENCY FOR DB-MMES DATA GATHERING 对DB-MMES数据收集的最小延迟

本节介绍给定h跳集群的mcv的数据收集延迟分析。为了进一步减少MCV数据收集的长等待时间(延迟),并处理由多跳传输引起的冲突问题,我们考虑从CHs到MCV的单跳数据传输策略。在这里,我们假设感知到的数据在CHs上聚合,然后在到达时被转发到MCV。对于数据收集算法描述,我们注意到这种算法描述使用了两个数据包,即数据请求(DREQ)和数据回复(DREP)。DREQ在MCV到达集群的AP时处理到MCV的所有数据传输活动。数据传输方式可以采用多跳和单跳路由的形式。在远离其CHs的传感器之间采用多跳法进行数据传输,而在CH和MCV之间采用单跳法进行数据传输。以下场景,如算法1所示,在MCV到达集群/子组时执行。

能量中性条件规定,传感器节点的总能量消耗必须小于或等于网络中可用的能量之和。否则,这些节点将耗尽能量,变成死节点。这个可以从(9)中表示为

在这里插入图片描述

式中,Et (T)为达到T的网络总能耗,T为大时间,ER (T)为达到T的网络总能量,可用于给传感器节点充电,Eso为所有传感器节点的初始能量。请注意,如果能源消耗和供应之间存在暂时的不平衡,网络运营可能不会受到影响。这是因为如果有足够的mcv,节点将不断充电,从而消除任何形式的不平衡。

我们的目标是确定(11个)持有所需的mcv的数量。我们首先估计ER (T)的值是可以使用(12)重新填充到网络中的mcv的能量量。当传感器节点在没有任何停止时间的情况下连续充电时,就可以实现MCV的全部充电容量

在这里插入图片描述

式中,n为MCV数,L为网络长度,t为传感器的充电时间,v为MCV的速度我们注意到,这些能量可以用来给传感器充电,因此,采用[48]中的方法来推导和计算连续网络运行所需的最小n个mcv,计算结果为

在这里插入图片描述

其中β−1是逆累积分布函数或正态分布,ε值接近统一但不等于1,L是传感器领域的长度,v是MCV的移动速度,t是传感器节点的电池的充电时间,ψs是传感器节点的电池容量。基于(13)的结果,我们展示了mcv的数量和数据收集延迟之间的权衡。图12显示了L = 400m的簇跳计数h的变化,以及相应的所需的mcv数量与数据延迟的上限。图12还显示了h = 3附近的权衡点,这意味着在h≈3时,mcv的数量可以在不牺牲太多数据收集延迟的情况下尽量减少。

A. Cluster Head and Leader Node Selection Strategy 集群头和领导节点选择策略

在DB-MMEs中,重叠区域的CHs或高剩余能量节点用于从该区域相邻节点的数据收集活动,并在到达OP时将数据传输到MCV。CHs的选择是动态的,因为每个组或区域重新选择CH,以避免或最小化热点问题的多跳聚类[49],[50]和DREQ洪水问题[15],[51]。CH选择剩余能量最高的节点作为CH,在任何时候CH的能量低于一定阈值时,选择另一个剩余能量最高的节点作为能量不足CH以维持网络的运行周期。虽然CHs位于其簇的中心,用于数据聚合,但浓度较高
剩余能量节点或前导节点位于重叠区域。因此,MCV只需要在整个网络操作过程中与这些领导节点进行通信。重叠区域中的节点可以被选择为由两个或多个集群组成的区域的先导。靠近同一区域的其他ch将通过单跳传输将其聚合的数据转发到主节点。在选择一个先导节点时,可以选择该区域内的一个高剩余能量节点作为先导节点,以维持网络的生命周期。如果没有节点属于重叠区域,则选择每个集群的CH作为前导节点。图13显示了三组网络的CH或前导节点选择策略。

B. Optimal Number of MCVs Computation mcv计算的最优数

对于ls-wrsn,mcv可能会在移动数据收集和无线充电方面经历很长的旅行路径,因为通常有很多dccp需要访问。因此,在这种情况下,数据收集和能量供应通常需要很长一段时间,特别是对于延迟不容忍的应用程序。因此,在这种情况下,需要多个mcv才能满足特定的申请。然而,使用多个mcv带来额外的挑战,包括成本和网络复杂性。因此,需要确定连续网络运行的最优mcv数量。本工作旨在通过确定移动数据采集和无线充电所需的最佳mcv数量来实现这一目标,以保证网络的稳定性和及时性。如果最优数量的mcv不能满足网络由于成本或其他原因,一些可用或机会[23]mcv可以利用支持特定的期限性能在给定的时间内,以确保定期充电的无线传感设备和确保连续的网络操作。然而,使用机会主义mcv的服务可能会产生额外的挑战,包括成本和网络复杂性。其中之一主要的挑战是机会性mcv的调度问题和路径规划策略,这可能会影响WRSN的稳定性。为了解决这一问题,本文提出了优化MCV调度和路径规划策略。在此,我们研究了一种新的最优mcv部署下的最后期限时间约束dTC。如果TD表示MCV在一次数据收集和移动无线充电中花费的总时间,则TD等于固定路径上的总移动时间加上OPs收集数据并无线充电传感器节点的停止时间。因此

在这里插入图片描述

这里,Tk表示在第k个OP处的停止时间,而d(OPk−OPk+1)是两个OPs之间的欧氏距离。MCV以v(m/s)的速度移动。与数据采集和无线充电的时间相比,MCV的停止时间可以忽略不计。数据收集和无线充电所花费的时间取决于传输数据的CH的数据大小和每个集群中缺能量传感器的总数。如果r表示MCV的数据采集率,LDREQ表示数据大小(即数据请求长度,DREQ位),则MCV旅行时间(即访问所有区域OPs所花费的总时间)可以写成:

在这里插入图片描述

设dTC表示传感器的数据采集和无线充电的截止时间约束,设n表示截止时间约束下的最优mcv个数。因此,利用n个mcv的最优时间tOPT为

在这里插入图片描述
对于截止时间约束,tOPT≤dTC的值。

所以,从(15)-(17)中,我们得到了

在这里插入图片描述

因此,(18)可以用来找到在网络中部署的mcv的数据收集和传感器的无线充电的最佳数量。我们注意到,每个MCV的初始位置取决于数据的截止时间的限制

采集和无线充电和路径长度。基于上述参数,计算出每个MCV(lMCV)所走过的路径长度为

在这里插入图片描述

第一个可移动的MCV最初被部署在移动路径的开始处。然后,其他MCV随后沿着路径间隔部署lMCV。

为了进一步澄清,如果我们考虑一个包含7个OPs和13个CHs的网络,如图所示。5和6分别为单个MCV和多个MCV,并假设每个传感器中继5个数据大小为512字节的数据包,然后CHs1-13有50、55、65、65、65、60、55、65、65、100、60、50、65和60个数据包进行中继。如果我们将CH中每个MCV的数据收集速率设置为40 kb/s,则会出现以下场景:一个以10 m/s的速度移动的单一MCV用于数据收集和传感器节点的无线充电。MCV从初始位置开始其旅行,并访问第一个最近的OP,从CH收集数据,并对CH附近的传感器进行无线充电。其中一个CHs(如CH5)有96个数据包用于传输,MCV在OP(如OP5)收集所有数据包的停止时间为10.92秒。类似地,当MCV沿着其他最近点(即在其他不同的OPs)穿越时的停止时间可以使用(14)计算为17.47、12.97、11.76、9.14、10.23和8.54 s。因此,总停止时间为81.03 s。根据图4,200个传感器的[42]预定轨迹时间为960.56 s。因此,数据采集和无线充电的总时间等于轨迹时间加上停止时间,即(960.56 + 81.03)= 1041.59 s。假设充电和数据收集的截止时间为400 s,那么我们可以根据(18)作为n =([1041.59/400])≈计算出MCV的最佳数量3。

在实际应用程序中,需要尽快检索来自被监控领域的数据,这样数据就不会变得无用。我们使用(14)-(18)测试了所提出的方法的性能,该方法演示了如何计算mcv的最优数量。在这里,我们计算了在400秒时的n个=3。我们将完成数据收集和无线充电的最后期限设置为400秒。图14(a)为不同mcv数量下的最大时间使用结果。图中显示,当n>3(超过三个mcv)时,最大使用时间小于400 s。这意味着当mcv的数量大于2时,所有的mcv都能够在截止日期前完成其任务。因此,在这种情况下,mcv的最佳数量是3。图14(b)显示了在特定截止日期内的最佳mcv数量的结果。

C. Optimizing Path Planning Strategy of MCVs 优化mcv的路径规划策略

MCV的轨迹规划是为了满足一定的截止时间要求,保证收集数据的有效性和有用性,并减少网络中的能量洞问题。当一个传感器节点的能量低于阈值,从而使得连续的数据传感操作变得困难。通过实现无线充电和数据采集操作的及时性和满足截止时间的要求,可以将能量洞问题最小化。每个MCV定位在指定的位置,使用(19)计算。我们在[46]中使用最近邻(NN)启发式算法来得到最优轨迹。为此,MCV从初始位置开始,沿着指定的路径穿越,只在指定点停止,对其传输范围内的能量约束传感器进行无线充电,并在每次访问后返回初始位置。重复这个过程,直到所有的mcv都完成了如算法2所示的任务。MCV完成其任务所需的时间取决于区域OPs的数量。为了优化时间和能源消耗,每个MCV都被分配了一个最接近它们的区域OPs的平均数量。

该方法处理一个多路由问题,确定最优Q路由R1、R2、…,RQ,以协同访问所有z OPs,使穿越Q路由所需的最长时间最小。我们注意到,使用移动元素的数据收集和无线充电与多个TSP [11]是相同的,通过调整[52]和[53]中的方法,可以证明它是np困难的。因此,启发式算法可以用来实现一个接近最优的解。为了实现截止时间限制和优化能耗,我们为每个MCV确定一个最优路径,并为每个MCV分配一个平均的OPs数量。公式(20)有助于计算分配给每个MCV的OPs的平均数量。
在这里插入图片描述
其中,ANOP为分配给每个MCV的平均OPs个数,z为OPs的个数,n为MCV的个数。在OPs数z不能被n均匀整除的情况下,可以使用(21)来解决这个问题

在这里插入图片描述
式(21)表示Rmcv必须传递Q + 1数的OPs,而其他必须通过Q数的OPs。Q表示z/n的商,R表示它的余数。例如,如果3个mcv被部署到8个OPs,通过(21),这意味着z = 8,n = 3,Q = 2和R = 2。因此,将8个OPs分配给3个mcv将采用[3;3;2]的形式。分配给每个MCV的OPs的数量可以使用一个距离矩阵来计算,其中OPs和所有MCV之间的距离由以下条目表示如下:

在这里插入图片描述
这里,mcv的数量取行索引,而OPs的数量取列索引。分配给MCV的OPs的数量由各自列中的距离矩阵的最小值决定。例如,如果一个OP2与MCV2之间的距离小于其他MCV2之间的距离,则将其分配给一个MCV2。所有其他的OPs和相关的mcv也是如此。即,如果d(MCV2,OP2)< d(MCV1,OP2),则OP2→MCV2。一般来说,如果多个mcv之间的距离最小,则一个OP被随机分配给它们中的任意一个。每个MCVi从开始的位置开始它的旅行,穿越OPi中的所有OPs,最后返回到起点。MCVi所遍历的总路径长度可以使用(23)来计算:

在这里插入图片描述
式中,1≤i,k≤n和i = k,nOPi表示第i条路径上的OPs数。对于无线充电和数据收集,MCV最初需要访问最近的OP。因此,为每个路径的OPi中OPik的排序会了以下问题:

在这里插入图片描述

由于随着节点数的增加,计算成本增加了无线充电和数据采集的np硬度,我们采用了启发式技术,如神经网络来最小化充电和数据传输延迟。使用这个算法(NN),一个MCV通过选择要最初访问的最近的OP来开始它的访问。下一步是找到另一个尚未访问的OP。此过程一直持续到所有操作访问为止。已知神经网络算法可以立即定位路由。然而,他们的性能质量取决于首发位置。这在算法3中描述如下。

5.SIMULATION RESULTS AND ANALYSIS 仿真结果

6.总结

补充

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wei *

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值