算法导论:从推排序到优先队列

堆排序

一般来说堆排序针对的是二叉堆,这是一种数组结构,且表达为完全二叉树的形式:

完全二叉树:除最底层都是满的,且最下层节点从左到右依次排开。

这样的好处是能够通过简单的代数计算获得父节点、左孩子、右孩子节点在数组结构中的编号:

在这里插入图片描述

如此可以很简便的用代码表达为:

int Parent(int i)
{
    return i >> 1;
}
int Left(int i)
{
    return i << 1;
}
int Right(int i)
{
    return (i << 1) + 1;
}

二叉堆分为大根堆和小根堆,从表面意思可以理解:

  • 大根堆: V a l u e ( p a r e n t ( i ) ) ≥ V a l u e ( i ) Value(parent(i))\ge Value(i) Value(parent(i))Value(i)
  • 小根堆: V a l u e ( p a r e n t ( i ) ) ≤ V a l u e ( i ) Value(parent(i))\le Value(i) Value(parent(i))Value(i)
维护堆的性质

Max-Heapify(i)是维护大根堆的性质的过程(小根堆则相反),该方法用于维护数组索引为i位置的元素保持性质,其中默认的背景是只维护当前点(当前点的左右孩子均符合性质):

void MaxHeapify(int *a, int i, int heap_size)
{
    int l = Left(i);
    int r = Right(i);
    int largest = i;
    if (l <= heap_size && a[l] > a[i])
        largest = l;
    else
        largest = i;
    if (r <= heap_size && a[r] > a[largest])
        largest = r;
    if (largest != i)
    {
        swap(a[i], a[largest]);
        MaxHeapify(a, largest, heap_size);
    }
}

分别于左右孩子进行基于性质的比较,最终如果最大的值不是原先的父节点,那么交换两者,此时largest索引的元素位置即为被换下的父节点,这三个点的关系很明了,但当前largest索引为父节点的节点性质有可能被破坏了,所以如果改变后需要向下迭代维护性质。

在这里插入图片描述

建堆

上述已经说明二叉堆是数组结构,所以建堆的过程实际是维护堆性质的过程,那么叶子节点一定不用维护(因为这时叶子节点单个点一定能够满足堆的性质),依据二叉堆的性质:

完全二叉树编号为 ( ⌊ n 2 ⌋ , n ] (\lfloor \frac{n}{2}\rfloor ,n] (2n,n]区间内的节点均为叶子节点。

证明:尝试找到最底层从左至右最右边的一个叶子节点编号为 n n n,那么其父亲是上一层从左到右最右边的具有叶子节点的节点,其编号为 ⌊ n 2 ⌋ \lfloor\frac{n}{2}\rfloor 2n

void BuildMaxHeap(int *a, int size)
{
    int heap_size = size;
    for (int i = heap_size >> 1; i >= 1; i--)
        MaxHeapify(a, i, heap_size);
}

这里采用遍历前方具有孩子的节点进行维护,逆向维护的原因是维护性质方法Max-Heapify假设情况为左右子树均符合性质要求。

堆排序

因为上述建堆的过程可以将最大的元素(此处说明的是大根堆),放置于顶端,所以依照此方案,每次都能在顶端取到最大元素,只要能把最大元素取出来。

讨论上述实现为什么使用数组长度size和堆数组长度heap_size两个变量描述过程:

取出来的操作可以抽象理解为不去管理当前元素,一个很好的办法就是将其放在数组最末端,堆数组长度自减使得不予理会该元素,那么最快捷的方法(最小元素交换次数)是将堆顶元素和堆尾元素交换其在数组中的实际索引:

在这里插入图片描述

直到堆长度为 1 1 1,换句话说堆数组长度实际是虚拟的长度,其管辖范围内的长度,实现方法为:

void HeapSort(int *a, int size)
{
    BuildMaxHeap(a, size);
    int heap_size = size;
    for (int i = size; i > 1; i--)
    {
        swap(a[1], a[i]);
        MaxHeapify(a, 1, --heap_size);
    }
}
优先队列

优先队列会应用于图论的很多算法中,其中主要负责的是维护一组元素集合,可以是简单的数据,也可以是复杂的结构类型,其中维护的内容为每个元素节点的关键字 k e y key key,使得整棵二叉树都遵循 k e y key key的数量关系,用最大优先队列举例:

  • Insert():插入元素操作
  • Maximum():返回树中最大值
  • ExtractMax():弹出并返回最大值
  • Increase-Key():将某个节点键值key做改变

对应于最小优先队列则是减少某节点键值,因为这里其实更强调的是操作后是否对性质产生破坏。

##### 返回最大值

操作很显然,直接返回数组结构的第一位:

int HeapMaxiNum(int *a)
{
    return a[1];
}
弹出最大值并返回

类比堆排序,相比删除元素,弹出的意义同样是不加入推排序的管辖,所以只需要与堆数组最后一位做交换并维护对的性质即可:

int HeapExtractMax(int *a, int &size)
{
    if (size < 1)
        return -1;
    int max_num = a[1];
    a[1] = a[size];
    MaxHeapify(a, 1, --size);
    return max_num;
}
改变某元素的key

此时需要与父节点做比较,因为堆的性质中并没有针对孩子节点之间的要求,所以只要能满足大于孩子节点即找到了最佳解决方案,向上查找是个理性的方法:

void HeapIncreaseKey(int *a, int i, int key)
{
    if (key < a[i])
        return;
    a[i] = key;
    while (i > 1 && a[Parent(i)] < a[i])
    {
        swap(a[i], a[Parent(i)]);
        i = Parent(i);
    }
}

这里描述中对于关键字的检验不是必须的,甚至如果愿意扩展,可以向下对二叉堆做性质的维护检查。

在这里插入图片描述

插入元素

插入元素更像是排序过程中取消管理权限的逆过程,增加管理权限需要对堆的长度做上述相反的维护,如果默认新扩展的数组单元为负无穷的话(这里对大根堆做描述所以为负无穷),对其的值的改变操作恰好符合了改变某元素key的方法,所以实现为:

void MaxHeapInsert(int *a, int key, int &size)
{
    size++;
    a[size] = MinNum;
    HeapIncreaseKey(a, size, key);
}

注:在一个包含 n n n个元素的队列中,所有操作均在 O ( l g n ) O(lgn) O(lgn)时间内完成。

全部源码阅读原文获取🐶

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学小牛马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值