欧几里得和扩展欧几里得

欧几里得算法(辗转相除法)

gcd(a,b)为求解两个a,b自然数的最大公因数的函数:

\large gcd(a,b)=gcd(b,a mod b)

代码: 

int gcd(int a,int b)
{
    if(b==0) return a;
    return gcd(b,a%b);
}

 防爆栈版:

int gcd(int a,int b)
{
    while(b)
    {
        a=a%b;
        swap(a,b);
    }
    return a;
}

扩展欧几里得算法

例:已知a,b,求解一组x,y,使他们满足:ax+by=gcd(a,b)

假设a>b

①:b=0,a=gcd(a,b)。所以可推出x=1,y=0(这里我觉得y可以为任意值 因为b已经为0了,y取什么都无意义了)。

②:1.ax1+by1=gcd(a,b)

       2.bx2+(a%b)y2=gcd(a,a%b)

由于gcd(a,b)=gcd(b,a%b),所以ax1+by1=bx2+(a%b)y2

由于a%b=a-a/b*b,所以ax1+by1=bx2+(a-a/b*b)*y2,最后得到ax1+by1=ay2+b*(x2-a/b*y2),前后两式相等得:x1=y2,y1=x2-a/b*y2。

代码:

int exgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    int x2,y2;
    int gcd=exgcd(b,a%b,x2,y2);
    x=y2,y=x2-a/b*y2;
    return gcd;
}

精简版:

int exgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    int gcd=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return gcd;
}

扩展欧几里得的应用

一、求解ax+by=c(ax=c(mod b))的最小正整数

步骤:

①:运用扩展欧几里得求出ax+by=gcd(a,b)的一组解(x,y)

②:根据c%gcd(a,b)判断是否ax+by=c有解 

③:若方程有解,ax+by=gcd(a,b)两边同时乘c/gcd(a,b),得 (a*c/gcd(a,b))*x+(b*c/gcd(a,b))*y=c,x1=x*c/gcd(a,b),y1=y*c/gcd(a,b),如果x1每次减少x0 (a*c/gcd(a,b)*x0),则y1每次增加y0 (b*c/gcd(a,b)*y0),增加量与减少量相等,所以x0/y0=b/gcd(a,b)/a/gcd(a,b),所以x每次减少b/gcd(a,b), 直到 x-i*x0>=0 && x-(i+1)*x0<0  (i为减x的次数) 这时得到的就是最小整数解。令b1=b/gcd(a,b) ,所以x1的最小正整数解为:x1= (x1%b1+b1)%b1, 对应的y1=(c-a*x1)/b.

※:

  • a*x + b*y == gcd(a,b)的通解为

       X = X1 - b/gcd(a,b)*t

       Y = Y1 + a/gcd(a,b)*t  

  • 求解不定方程a*x + b*y == c的步骤为

   1.  先用扩展欧几里得求出 a*m + b* y ==gcd(a,b)的一组特解 M0,N0;

   2.  求出a*x + b*y ==c 的通解为(t为任一整数)

       b1=b/gcd(a,b)   a1=a/gcd(a,b)

       X = (c*M0 - b1*t)/gcd(a,b);

       Y = (c*N0 + a1*t)/gcd(a,b);

代码:

#include<bits/stdc++.h>
using namespace std;

int exgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    int gcd=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return gcd;
}
int main()
{
    int a,b,c,Gcd,x,y;
    scanf("%d %d %d",&a,&b,&c);
    Gcd=exgcd(a,b,x,y);
    if(c%Gcd!=0) printf("无解");
    else
    {
        int x1,y1,b1;
        b1=b/Gcd;
        x1=(x+b1)*(c/Gcd);
        x1=(x1%b1+b1)%b1;
        y1=(c-a*x1)/b;
    }
}

二、求解线性同余方程

线性同余方程:

给定整数a,b,c,求一个整数x满足ax≡b(mod c),或者给出无解。因为未知数的指数为1,所以我们称之为一次同余方程,也叫做线性同余方程

ax≡b(mod c)等价于 ax-b 是c的倍数,假设设为-y倍,等价于求ax+cy=b,就转换成了求不定方程的解

三、求模的逆元

逆元:

当求解公式:(a/b)%m 时,因b可能会过大,会出现爆精度的情况,所以需变除法为乘法:

设c是b的逆元,则有b*c≡1(mod m) (b*c%m=1);

则(a/b)%m = (a/b)*1%m = (a/b)*b*c%m = a*c(mod m);

即a/b的模等于a*b的逆元的模;

代码:

#include<bits/stdc++.h>
using namespace std;

int exgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    int gcd=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return gcd;
}
int main()
{
    int a,b,c,x,y,r;
    scanf("%d %d",&a,&b);
    int Gcd=exgcd(a,b,x,y);
    x=(x%b+b)%b;
    if(!x)x++;
}

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值