【LeetCode】Day122-根据字符出现频率排序 & 最接近原点的 K 个点

题目1、据字符出现频率排序

451. 根据字符出现频率排序【中等】

题解

优先队列

和昨天的题非常像,不同是昨天是统计数字的频次,今天统计字符的频次

思路很容易,同样用优先队列实现,关键是如何用代码实现,PriorityQueue中的元素为Map.Entry<Character,Integer>

class Solution {
    public String frequencySort(String s) {
        //计数
        int n=s.length();
        Map<Character,Integer>map=new HashMap<>();
        for(int i=0;i<n;i++){
            map.put(s.charAt(i),map.getOrDefault(s.charAt(i),0)+1);
        }
        //优先队列初始化
        Queue<Map.Entry<Character,Integer>>queue=new PriorityQueue<>(new Comparator<Map.Entry<Character,Integer>>(){
            public int compare(Map.Entry<Character,Integer>p1,Map.Entry<Character,Integer>p2){
                return p2.getValue()-p1.getValue();
            }
        });
        //频次存储进优先队列
        for(Map.Entry<Character,Integer>entry:map.entrySet()){
            queue.offer(entry);
        }
        //重排字符串
        StringBuffer sb=new StringBuffer();
        while(!queue.isEmpty()){
            char ch=queue.poll().getKey();
            int count=map.get(ch);
            for(int i=0;i<count;i++)
                sb.append(ch);
        }
        return sb.toString();
    }
}

时间复杂度: O ( n + k ) O(n+k) O(n+k),其中 n 是字符串 s 的长度,k 是字符串 s 包含的不同字符的个数。

空间复杂度: O ( n ) O(n) O(n)

桶排序

由于每个字符在字符串中出现的频率存在上限,因此可以使用桶排序的思想,根据出现次数生成排序后的字符串。具体做法如下:

遍历字符串,统计每个字符出现的频率,同时记录最高频率 maxFreq;

创建桶,存储从 1 到 maxFreq 的每个出现频率的字符;

按照出现频率从大到小的顺序遍历桶,对于每个出现频率,获得对应的字符,然后将每个字符按照出现频率拼接到排序后的字符串。

class Solution {
    public String frequencySort(String s) {
        //计数
        int n=s.length(),maxfrq=0;
        Map<Character,Integer>map=new HashMap<>();
        for(int i=0;i<n;i++){
            int frq=map.getOrDefault(s.charAt(i),0)+1;
            map.put(s.charAt(i),frq);
            maxfrq=Math.max(maxfrq,frq);
        }
        //桶初始化
        StringBuffer[] bucket=new StringBuffer[maxfrq+1];
        for(int i=0;i<=maxfrq;i++){
            bucket[i]=new StringBuffer();
        }
        //桶存储每个出现频率的字符
        for(Map.Entry<Character,Integer>entry:map.entrySet()){
            char ch=entry.getKey();
            int frq=entry.getValue();
            bucket[frq].append(ch);
        }
        //重排字符串
        StringBuffer sb=new StringBuffer();
        for(int i=maxfrq;i>0;i--){//依照频次遍历桶
            for(int j=0;j<bucket[i].length();j++){//遍历桶中字符
                for(int k=0;k<i;k++)//依照字符出现频次加入字符串
                    sb.append(bucket[i].charAt(j));
            }
        }
        return sb.toString();
    }
}

时间复杂度: O ( n + k ) O(n+k) O(n+k),其中 n 是字符串 s 的长度,k 是字符串 s 包含的不同字符的个数。
创建桶并将不同字符加入桶需要 O(k) 的时间。
生成排序后的字符串,需要 O(k) 的时间遍历桶,以及 O(n) 的时拼接字符串时间。

空间复杂度: O ( n + k ) O(n+k) O(n+k),空间复杂度主要取决于桶和生成的排序后的字符串。

题目2、最接近原点的 K 个点

973. 最接近原点的 K 个点【中等】

题解

优先队列

思路很简单,同样用优先队列实现,优先队列元素是 int[3]{x,y,distance},实现一个大根堆

class Solution {
    public int[][] kClosest(int[][] points, int k) {
        int n=points.length;
        PriorityQueue<int[]>queue=new PriorityQueue<int[]>(new Comparator<int[]>(){
            public int compare(int[] a,int[] b){
                return b[2]-a[2];
            }
        });
        for(int i=0;i<n;i++){
            int x=points[i][0],y=points[i][1];
            int dis=x*x+y*y;
            if(queue.size()==k){
                if(queue.peek()[2]>dis){
                    queue.poll();
                    queue.offer(new int[]{x,y,dis});
                }
            }
            else
                queue.offer(new int[]{x,y,dis});
        }
        int[][] res=new int[k][2];
        for(int i=0;i<k;i++){
            int[] point=queue.poll();
            res[i][0]=point[0];
            res[i][1]=point[1];
        }
        return res;
    }
}

时间复杂度: O ( n l o g k ) O(nlogk) O(nlogk),其中 n 是 points 的长度。由于大根堆维护的是前 k 个距离最小的点,因此弹出和插入操作的单次时间复杂度均为 O(logk)。在最坏情况下,数组里 n 个点都会插入,因此时间复杂度为 O(nlogk)。

空间复杂度: O ( k ) O(k) O(k),优先队列里最多存储k个点。

直接排序

这题还有更简单的方法,直接对数组排序就可以…最后取出数组的前k个元素

class Solution {
    public int[][] kClosest(int[][] points, int k) {
        Arrays.sort(points,new Comparator<int[]>(){
            public int compare(int[] p1,int[] p2){
                return (p1[0]*p1[0]+p1[1]*p1[1])-(p2[0]*p2[0]+p2[1]*p2[1]);
            }
        });
        return Arrays.copyOfRange(points,0,k);
    }
}

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)

空间复杂度: O ( l o g n ) O(logn) O(logn),排序所需额外的空间复杂度为 O(logn)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值