题目1、据字符出现频率排序
题解
优先队列
和昨天的题非常像,不同是昨天是统计数字的频次,今天统计字符的频次
思路很容易,同样用优先队列实现,关键是如何用代码实现,PriorityQueue
中的元素为Map.Entry<Character,Integer>
class Solution {
public String frequencySort(String s) {
//计数
int n=s.length();
Map<Character,Integer>map=new HashMap<>();
for(int i=0;i<n;i++){
map.put(s.charAt(i),map.getOrDefault(s.charAt(i),0)+1);
}
//优先队列初始化
Queue<Map.Entry<Character,Integer>>queue=new PriorityQueue<>(new Comparator<Map.Entry<Character,Integer>>(){
public int compare(Map.Entry<Character,Integer>p1,Map.Entry<Character,Integer>p2){
return p2.getValue()-p1.getValue();
}
});
//频次存储进优先队列
for(Map.Entry<Character,Integer>entry:map.entrySet()){
queue.offer(entry);
}
//重排字符串
StringBuffer sb=new StringBuffer();
while(!queue.isEmpty()){
char ch=queue.poll().getKey();
int count=map.get(ch);
for(int i=0;i<count;i++)
sb.append(ch);
}
return sb.toString();
}
}
时间复杂度: O ( n + k ) O(n+k) O(n+k),其中 n 是字符串 s 的长度,k 是字符串 s 包含的不同字符的个数。
空间复杂度: O ( n ) O(n) O(n)
桶排序
由于每个字符在字符串中出现的频率存在上限,因此可以使用桶排序的思想,根据出现次数生成排序后的字符串。具体做法如下:
遍历字符串,统计每个字符出现的频率,同时记录最高频率 maxFreq;
创建桶,存储从 1 到 maxFreq 的每个出现频率的字符;
按照出现频率从大到小的顺序遍历桶,对于每个出现频率,获得对应的字符,然后将每个字符按照出现频率拼接到排序后的字符串。
class Solution {
public String frequencySort(String s) {
//计数
int n=s.length(),maxfrq=0;
Map<Character,Integer>map=new HashMap<>();
for(int i=0;i<n;i++){
int frq=map.getOrDefault(s.charAt(i),0)+1;
map.put(s.charAt(i),frq);
maxfrq=Math.max(maxfrq,frq);
}
//桶初始化
StringBuffer[] bucket=new StringBuffer[maxfrq+1];
for(int i=0;i<=maxfrq;i++){
bucket[i]=new StringBuffer();
}
//桶存储每个出现频率的字符
for(Map.Entry<Character,Integer>entry:map.entrySet()){
char ch=entry.getKey();
int frq=entry.getValue();
bucket[frq].append(ch);
}
//重排字符串
StringBuffer sb=new StringBuffer();
for(int i=maxfrq;i>0;i--){//依照频次遍历桶
for(int j=0;j<bucket[i].length();j++){//遍历桶中字符
for(int k=0;k<i;k++)//依照字符出现频次加入字符串
sb.append(bucket[i].charAt(j));
}
}
return sb.toString();
}
}
时间复杂度:
O
(
n
+
k
)
O(n+k)
O(n+k),其中 n 是字符串 s 的长度,k 是字符串 s 包含的不同字符的个数。
创建桶并将不同字符加入桶需要 O(k) 的时间。
生成排序后的字符串,需要 O(k) 的时间遍历桶,以及 O(n) 的时拼接字符串时间。
空间复杂度: O ( n + k ) O(n+k) O(n+k),空间复杂度主要取决于桶和生成的排序后的字符串。
题目2、最接近原点的 K 个点
题解
优先队列
思路很简单,同样用优先队列实现,优先队列元素是 int[3]{x,y,distance}
,实现一个大根堆。
class Solution {
public int[][] kClosest(int[][] points, int k) {
int n=points.length;
PriorityQueue<int[]>queue=new PriorityQueue<int[]>(new Comparator<int[]>(){
public int compare(int[] a,int[] b){
return b[2]-a[2];
}
});
for(int i=0;i<n;i++){
int x=points[i][0],y=points[i][1];
int dis=x*x+y*y;
if(queue.size()==k){
if(queue.peek()[2]>dis){
queue.poll();
queue.offer(new int[]{x,y,dis});
}
}
else
queue.offer(new int[]{x,y,dis});
}
int[][] res=new int[k][2];
for(int i=0;i<k;i++){
int[] point=queue.poll();
res[i][0]=point[0];
res[i][1]=point[1];
}
return res;
}
}
时间复杂度: O ( n l o g k ) O(nlogk) O(nlogk),其中 n 是 points 的长度。由于大根堆维护的是前 k 个距离最小的点,因此弹出和插入操作的单次时间复杂度均为 O(logk)。在最坏情况下,数组里 n 个点都会插入,因此时间复杂度为 O(nlogk)。
空间复杂度: O ( k ) O(k) O(k),优先队列里最多存储k个点。
直接排序
这题还有更简单的方法,直接对数组排序就可以…最后取出数组的前k个元素
class Solution {
public int[][] kClosest(int[][] points, int k) {
Arrays.sort(points,new Comparator<int[]>(){
public int compare(int[] p1,int[] p2){
return (p1[0]*p1[0]+p1[1]*p1[1])-(p2[0]*p2[0]+p2[1]*p2[1]);
}
});
return Arrays.copyOfRange(points,0,k);
}
}
时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( l o g n ) O(logn) O(logn),排序所需额外的空间复杂度为 O(logn)。