Pycharm + Jupyter
先看效果:可以看到我本地的datasets文件的目录和打印出来的是不一样的,说明成功连接到远程了。
痛点分析
- 自己的电脑不适合跑深度学习:本人习惯用macos,mac懂得都懂…系统用着是挺舒服的,就是这性能有点拉(19年的,不是M1),没法拿来跑深度学习(毕竟光数据集就很大,我的mac还是256g的)…哪怕是用游戏本的朋友,我相信一般能不用自己电脑跑也不会用自己电脑跑(毕竟自己的卡要用来打游戏hhhh)
- 在服务器编辑代码不方便:如果直接在服务器上写代码看代码,那就要用vim了,界面看着丑是其次,主要是真的很影响效率…
- 集群的计算节点没法直接连上去:懂行的朋友一定会问,那你搞jupyter连接干嘛,直接用pycharm连server的环境不就好了,在jupyter里编译器选server上的。我遇到的问题是,实验室的集群pycharm只能直接连到登陆节点上(只有CPU,GPU都在计算节点上),不能连接到计算节点上(应该是怕被黑客装挖矿程序,计算节点屏蔽掉外部访问了)。尝试过想把远程连到计算节点上,最后无疾而终。因此想到了个解决方案:pycharm连接登陆节点做文件同步、jupyter连登陆节点做代码快速试错、同步后的成熟代码直接在服务器里进计算节点运行。
废话说完了,开始教程,新手不要放弃,顺着做就能配好!折腾一次,幸福一生!
首先配服务器上的jupyter
默认大家都有conda环境了,没有conda的朋友百度一下怎么装conda,很简单…这里不赘述了
- 给需要的conda环境安装jupyter
conda activate xxx # xxx用你要使用的环境名字
- 安装jupyter
conda install jupyter
- 生成jupyter配置文件
jupyter_notebook_config.py