【图像处理】图像离散小波变换(Discrete Wavelet Transform)及python代码实现

本文深入浅出地介绍了图像Haar Discrete Wavelet Transform (HDWT) 的原理,通过直观示例和Python代码展示了如何进行二维小波变换,提取边缘特征并用于去噪和超分辨率。重点讲解了H和L滤波器的作用以及LL, HL, LH, HH输出的含义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Motivation

看到有论文用到了图像的Haar Discrete Wavelet Transform(HDWT),前面也听老师提到过用小波变换做去噪、超分的文章,于是借着这个机会好好学习一下。

直观理解

参考知乎上的这篇文章:https://zhuanlan.zhihu.com/p/22450818 关于傅立叶变换和小波变换的直观概念解释的非常清楚(需要对傅立叶变换有基本的理解)

二维图像离散小波变换(DWT)

先放一张图直观感受一下这个过程(图中是经过两次DWT的)
在这里插入图片描述1. 首先明确什么是HL。H和L其实表示的是高通滤波器(High pass filter)和低通滤波器(Low pass filter)。高通滤波器用于提取边缘特征,低通滤波器用于图像近似(approximation).
2. 两次滤波得到输出结果。如下图所示,先通过低通和高通滤波器(纵向 vertical),再分别通过一次低通和高通滤波器(横向 horizontal)。最后得到LL, HL, LH, HH。分别表示近似图像(也可以理解为压缩了的图像,有损失)、纵向边缘特征(通过了纵向高通滤波器)、横向边缘特征(通过了横向高通滤波器)、对角特征(diagonal 横向纵向都通过高通滤波器)。
在这里插入图片描述
上图看不太清楚的话可以看下面这张图(看看后面的图就好了,中间的过程感觉表示的不太对)

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小丫么小阿豪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值