【技术追踪】通过潜在扩散和先验知识增强时空疾病进展模型(MICCAI-2024)

  向扩散模型中引入先验知识,实现疾病进展预测,扩散模型开始细节作业了~


论文:Enhancing Spatiotemporal Disease Progression Models via Latent Diffusion and Prior Knowledge
代码:https://github.com/LemuelPuglisi/BrLP


0、摘要

  本文介绍了基于潜在扩散的新型时空疾病进展模型—— Brain Latent Progression(BrLP)。BrLP 旨在预测个体在三维脑 MRI 上的疾病进展。(由当前图像获得疾病进展后的图像)。

  为完成这一任务而开发的现有深度生成模型主要以数据驱动为主,面临学习疾病进展的挑战。BrLP 通过结合疾病模型的先验知识来增强预测的准确性,解决了这些挑战。

  为了实现这一点,本文建议整合一个辅助模型来推断不同脑区的体积变化。此外,本文引入了潜在平均稳定化(Latent Average Stabilization,LAS),一种新的技术来提高预测进展的时空一致性。

  BrLP 在一个大规模数据集上进行训练和评估,该数据集包含来自 2805 名受试者的 11730 张 T1 加权脑部 MRI 图像,这些图像采集自三个公开的纵向阿尔茨海默病(AD)研究。

  实验中,在横断面和纵向设置中,将 BrLP 生成的 MRI 扫描与受试者实际可用的随访 MRI 进行比较。BrLP 在体积准确性和图像相似性方面均显著优于现有方法,其中在与阿尔茨海默病(AD)相关的脑区体积准确性提高了 22%,与真实扫描的图像相似性提高了 43%。

  BrLP 能够在受试者水平生成条件化的三维扫描,并且通过整合先验知识来提高准确性,这在疾病进展建模方面代表了一个重大进步,并为精准医疗开辟了新的途径。


1、引言

1.1、研究意义与当前挑战

  (1)相比于生物标志物的表征,利用丰富的、高维的影像表示疾病进展,便于可视化和精确定位复杂结构变化的模式,从而提供对疾病动态更详细的了解;
  (2)挑战 1: 通过基于受试者特定的元数据进行条件化,以提高个体化程度;
  (3)挑战 2: 在有条件的情况下使用纵向扫描;
  (4)挑战 3: 增强时空一致性,以实现空间和时间维度上的平滑进展;
  (5)挑战 4: 管理由于使用高分辨率三维医学图像而导致的高内存需求;

1.2、本文贡献

  (1)解决挑战 1: 提出将 LDM 和 ControlNet 结合起来,根据可用的受试者数据生成个体化的脑部 MRI;
  (2)解决挑战 2: 提出通过使用一个辅助模型来整合疾病进展的先验知识,该模型旨在推断不同脑区的体积变化,从而在有条件的情况下使用纵向数据;
  (3)解决挑战 3: 提出了 LAS,这是一种用于改善预测进展的时空一致性的技术;
  (4)解决挑战 4: 使用脑部 MRI 的潜在表示,以减少处理三维扫描的内存需求;

  本文通过训练 BrLP 来学习不同认知状态个体脑部的渐进性结构变化,从而评估其性能:认知正常(Cognitively Normal, CN)、轻度认知障碍(Mild Cognitive Impairment, MCI)以及阿尔茨海默病(Alzheimer’s Disease)。

  为此,本文使用了一个大规模数据集,包含来自 2805 名受试者的 11730 张 T1 加权脑部 MRI 图像,这些图像来自三个公开的阿尔茨海默病纵向研究。据本文作者所知,本文是首次提出一种用于脑部 MRI 的三维条件生成模型,该模型将疾病进展的先验知识整合到图像生成过程中。

挑战与贡献对应的写法很棒的感觉~


2、方法

2.1、Background - Diffusion Models

  原文略,可参考:【Diffusion综述】医学图像分析中的扩散模型(一)中 2.2 节;

2.2、Proposed Pipeline - Brain Latent Progression (BrLP)

  BrLP 架构由四个关键组件构成:一个 LDM(潜在扩散模型)、一个 ControlNet(控制网络)、一个辅助模型以及一个 LAS(时空一致性增强)模块。这四个组件共同解决了引言部分提到的挑战,其架构总体如 图1 所示。具体来说:

  (1)LDM 旨在生成符合特定协变量的随机三维脑部 MRI 图像;
  (2)ControlNet 则专注于将这些 MRI 图像细化到特定受试者的解剖结构;
  (3)辅助模型利用疾病进展的先验知识,以提高对特定脑区体积变化预测的精确性;
  (4)LAS 模块在推理过程中被用于增强时空一致性;

  
Figure 1 | BrLP训练和推理过程概述:

在这里插入图片描述

2.2.1、LDM:学习脑 MRI 分布

  在文献 [12] 的基础上,本文训练了一个潜在扩散模型(LDM),其目标是生成反映特定协变量 c = ⟨ s , v ⟩ c=⟨s,v⟩ c=s,v 的三维脑部 MRI 图像。其中, s s s 包括受试者特定的元数据(如年龄、性别和认知状态),而 v v v 则涵盖了与阿尔茨海默病(AD)进展相关的指标,例如与 AD 进展相关的脑区(海马体、大脑皮层、杏仁核、大脑白质和侧脑室)的体积。

  LDM 的构建是一个两阶段的过程。首先,训练一个自编码器 ( E , D ) (\mathcal E, \mathcal D) (E,D)图1中的A部分),该自编码器旨在为数据集中的每个脑部 MRI x x x 生成一个潜在表示 z = E ( x ) z = \mathcal E(x) z=E(x)。随后训练一个条件 UNet(图1中的B部分),表示为 ϵ θ ϵ_θ ϵθ,网络参数为 θ θ θ,旨在估计从 z t z_t zt 恢复到 z t − 1 z_{t-1} zt1 所需的噪声 ϵ θ ( z t , t , c ) ϵ_θ(z_t,t,c) ϵθ(zt,t,c),通过最小化损失函数 L ϵ \mathcal L_ϵ Lϵ 来训练 ϵ θ ϵ_θ ϵθ。协变量 c c c 作为条件通过交叉注意力机制集成到网络中。

  生成过程首先从采样随机高斯噪声 z T ∼ N ( 0 , I ) z_T∼\mathcal N(0,I) zTN(0,I) 开始,然后迭代地逆向执行每个扩散步骤 z t → z t − 1 z_t→z_{t−1} ztzt1,其中 t = T , … , 1 t=T,…,1 t=T,,1。对最终步骤 t = 1 t=1 t=1 的输出 z 0 z_0 z0 进行解码,可以得到一个符合指定协变量 c c c 的合成脑部 MRI 图像 x ^ = D ( z 0 ) \hat x=\mathcal D(z_0) x^=D(z0)

2.2.2、ControlNet:基于受试者脑部 MRI 的条件

  LDM 仅通过协变量 c c c 对生成的脑部 MRI 提供有限程度的控制,并且不允许根据单个解剖结构对模型进行调节。这个模块的目的是扩展 LDM 的能力,使其能够包含这种额外的控制功能。为了实现这一点,本文使用了 ControlNet(图1中的C部分),这是一个设计为与 LDM 协同工作的神经网络。

  将 ControlNet 和 LDM 概念化为一个统一的网络 ϵ θ , ϕ ϵ_{θ,ϕ} ϵθ,ϕ,其中 θ θ θ 表示 LDM 的固定网络参数, ϕ ϕ ϕ 表示 ControlNet 的可训练网络参数。与 LDM 一样, ϵ θ , ϕ ϵ_{θ,ϕ} ϵθ,ϕ 仍用于预测反向扩散步骤 z t → z t − 1 z_t→z_{t−1} ztzt1 中的噪声 ϵ θ , ϕ ( z t , t , c , z ) ϵ_{θ,ϕ}(z_t,t,c,z) ϵθ,ϕ(zt,t,c,z),现在将 z = E ( x ) z = \mathcal E(x) z=E(x) 也作为条件,以涵盖生成过程中目标脑 x x x 的结构。

  为了训练 ControlNet,本文使用来自同一患者在不同年龄 A < B A < B A<B 时拍摄的脑部 MRI 对的潜在表示 z ( A ) z^{(A)} z(A) z ( B ) z^{(B)} z(B)。与 z ( B ) z^{(B)} z(B) 相关的协变量 c ( B ) c^{(B)} c(B) 已知并用作目标协变量。每次训练迭代包括:

  (1)采样 t ∼ U [ 1 , T ] t∼U[1,T] tU[1,T]
  (2)执行 t t t 步前向扩散 z ( B ) → z t ( B ) z^{(B)}→z^{(B)}_t z(B)zt(B)
  (3)预测噪声 ϵ θ , ϕ ( z t ( B ) , t , c ( B ) , z ( A ) ) ϵ_{θ,ϕ}(z^{(B)}_t,t,c^{(B)},z^{(A)}) ϵθ,ϕ(zt(B),t,c(B),z(A)) 以恢复 z t ( B ) → z t − 1 ( B ) z^{(B)}_t→z^{(B)}_{t-1} zt(B)zt1(B)
  (4) 最小化损失 L ϵ \mathcal L_ϵ Lϵ

2.2.3、提出的辅助模型 - 利用疾病先验知识

  AD 相关区域随时间而缩小或扩大,且速率不同。基于深度学习的时空模型试图以黑盒方式直接从脑部 MRI 中学习这些进展速率,这可能非常具有挑战性。为了帮助这一过程,本文提出将有关体积变化的先验知识直接整合到流程中。

  为此,本文利用辅助模型 f ψ f_ψ fψ图1中的D部分),能够预测与 AD 相关的区域体积随时间的变化,并通过进展相关的协变量 v v v 将这些信息提供给 LDM。辅助模型的选择针对两种情况,使 BrLP 在横断面和纵向数据中都具有灵活性。

  对于在年龄 A A A 时有单次扫描的受试者,本文采用回归模型来估计年龄 B B B 时的体积变化 v ^ ( B ) = f ψ ( c ( A ) ) \hat v^{(B)} = f_ψ(c^{(A)}) v^(B)=fψ(c(A))。对于可以访问在年龄 A 1 , . . . , A n A_1, ..., A_n A1,...,An 时的 n n n 次过去访问的受试者,使用疾病进程映射 (DCM) 来预测 v ^ ( B ) = f ψ ( c ( A 1 ) , . . . , c ( A n ) ) \hat v^{(B)} = f_ψ(c^{(A_1)}, ... ,c^{(A_n)}) v^(B)=fψ(c(A1),...,c(An)),该模型专门用于疾病进展。DCM 旨在根据受试者可用的体积变化历史提供更准确的轨迹。虽然使用 DCM 作为潜在的解决方案,但任何合适的疾病进展模型都可用于 BrLP。

2.2.4、推理过程

  将 x ( A ) x^{(A)} x(A) 定义为年龄为 A A A 的受试者的输入脑部 MRI,已知受试者特定元数据 s ( A ) s^{(A)} s(A) 和从 x ( A ) x^{(A)} x(A) 测量的进展相关体积 v ( A ) v^{(A)} v(A)。如图1中的E部分总结,为了推断年龄 B > A B > A B>A 时的脑部 MRI x ( B ) x^{(B)} x(B),执行 6 个步骤:

  (1)使用辅助模型预测进展相关体积 v ^ ( B ) = f ψ ( c ( A ) ) \hat v^{(B)} = f_ψ(c^{(A)}) v^(B)=fψ(c(A))
  (2)将此信息与受试者特定的元数据 s ( B ) s^{(B)} s(B) 连接,形成目标协变量 c ( B ) = ⟨ s ( B ) , v ^ ( B ) ⟩ c^{(B)} =⟨s^{(B)},\hat v^{(B)}⟩ c(B)=s(B),v^(B)
  (3)计算潜在表示 z ( A ) = E ( x ( A ) ) z^{(A)} = \mathcal E(x^{(A)}) z(A)=E(x(A))
  (4)对随机高斯噪声 z T ∼ N ( 0 , I ) z_T∼\mathcal N(0,I) zTN(0,I) 进行采样;
  (5)通过预测噪声 ϵ θ , ϕ ( z t , t , c ( B ) , z ( A ) ) ϵ_{θ,ϕ}(z_t,t,c^{(B)},z^{(A)}) ϵθ,ϕ(zt,t,c(B),z(A)) 来运行反向扩散过程,以反转每个扩散步骤 t = T , … , 1 t=T,…,1 t=T,,1
  (6)使用解码器 D \mathcal D D 在图像域中重建预测的脑 MRI x ( B ) = D ( z 0 ) x^{(B)} = \mathcal D(z_0) x(B)=D(z0)

  这个推理过程被总结为一个紧凑的符号 z ^ ( B ) = I ( z T , x ( A ) , c ( A ) ) \hat z^{(B)} = \mathcal I(z_T, x^{(A)},c^{(A)}) z^(B)=I(zT,x(A),c(A)) x ^ ( B ) = D ( z ^ ( B ) ) \hat x^{(B)} = \mathcal D(\hat z^{(B)}) x^(B)=D(z^(B))

2.2.5、通过提出的潜在平均稳定化(LAS)增强推理

  初始值 x T ∼ N ( 0 , I ) x_T∼\mathcal N(0,I) xTN(0,I) 的变化可能导致推理过程产生的结果出现轻微差异。当对连续时间步进行预测时,这些差异尤为明显,表现为不规则的模式或进程的非平滑过渡。因此,本文引入了 LAS(图1中的F部分),这是一种通过平均推理过程的不同结果来提高时空一致性的技术。

  特别地,LAS 基于这样的假设:预测值 z ^ ( B ) = I ( z T , x ( A ) , c ( A ) ) \hat z^{(B)} = \mathcal I(z_T, x^{(A)},c^{(A)}) z^(B)=I(zT,x(A),c(A)) 偏离理论平均值 μ ( B ) = E [ z ^ ( B ) ] \mu ^{(B)} = \mathbb E[\hat z^{(B)}] μ(B)=E[z^(B)]。为了估计期望值 μ ( B ) \mu ^{(B)} μ(B),本文建议重复推理过程 m m m 次,并对结果进行平均:

在这里插入图片描述

  与之前类似,本文对预测的扫描进行解码 x ^ ( B ) = D ( μ ( B ) ) \hat x^{(B)} = \mathcal D(\mu ^{(B)}) x^(B)=D(μ(B))。整个推理过程(其中 m = 4 m = 4 m=4)在消费级 GPU 上每 MRI 需要 4.8 秒。


3、实验与结果

3.1、数据

  收集了一个大型数据集,包含来自 2,805 名受试者的 11,730 张 T1 加权脑部 MR I扫描图像,这些数据来自多个公开的纵向研究:ADNI 1/2/3/GO (1,990名受试者)、OASIS-3 (573名受试者)和 AIBL (242名受试者)。每位受试者至少有两张 MRI 图像,且每次扫描均在不同的访问中获取。

  所有数据集中均可以获得年龄、性别和认知状态。平均年龄为 74±7 岁,53% 的受试者为男性。根据最终访视结果,43.8% 的受试者被归类为正常对照组,25.7% 表现出或发展为轻度认知障碍,30.5% 表现出或发展为阿尔茨海默病。

  将数据随机分为训练集(80%)、验证集(5%)和测试集(15%),且各组之间没有重叠的受试者。验证集用于训练过程中的提前停止。每张脑部 MRI 图像均经过预处理,包括:N4 偏场校正、颅骨剥离、到 MNI 空间的仿射配准、强度归一化以及重采样至 1.5mm³。用于评估进展的相关协变量体积是使用 SynthSeg 2.0 计算得出,并以总脑体积的百分比表示,以考虑个体差异。

3.2、评价指标

  均方误差(MSE)和结构相似性指数(SSIM)用于评估扫描之间的图像相似性;
  与 AD 相关的区域(海马体、杏仁核、侧脑室、脑脊液和丘脑)的体积指标评估模型在追踪疾病进展方面的准确性;

3.3、消融实验与对比实验

  
Table 1 | 消融研究结果以及与基线方法的比较:预测体积中的 MAE(± SD)表示为总脑体积的百分比;
在这里插入图片描述

3.4、示例展示

  
Figure 2 | 将 70 岁 MCI 受试者 15 年的真实进展与 BrLP 和基线方法的预测进行比较:每种方法显示预测的 MRI(左)及其与受试者真实脑 MRI 的偏差(右);

在这里插入图片描述


  疾病进展还是太细节的变化了,怎样提升扩散模型的细节处理呢(我又被拒稿了,难过/(ㄒoㄒ)/~~)

开发语言:Java 框架:SSM(Spring、Spring MVC、MyBatis) JDK版本:JDK 1.8 或以上 开发工具:Eclipse 或 IntelliJ IDEA Maven版本:Maven 3.3 或以上 数据库:MySQL 5.7 或以上 此压缩包包含了本毕业设计项目的完整内容,具体包括源代码、毕业论文以及演示PPT模板。 项目配置完成后即可运行,若需添加额外功能,可根据需求自行扩展。 运行条件 确保已安装 JDK 1.8 或更高版本,并正确配置 Java 环境变量。 使用 Eclipse 或 IntelliJ IDEA 打开项目,导入 Maven 依赖,确保依赖包下载完成。 配置数据库环境,确保 MySQL 服务正常运行,并导入项目中提供的数据库脚本。 在 IDE 中启动项目,确认所有服务正常运行。 主要功能简述: 用户管理:系统管理员负责管理所有用户信息,包括学生、任课老师、班主任、院系领导学校领导的账号创建、权限分配等。 数据维护:管理员可以动态更新维护系统所需的数据,如学生信息、课程安排、学年安排等,确保系统的正常运行。 系统配置:管理员可以对系统进行配置,如设置数据库连接参数、调整系统参数等,以满足不同的使用需求。 身份验证:系统采用用户名密码进行身份验证,确保只有授权用户才能访问系统。不同用户类型(学生、任课老师、班主任、院系领导、学校领导、系统管理员)具有不同的操作权限。 权限控制:系统根据用户类型分配不同的操作权限,确保用户只能访问操作其权限范围内的功能数据。 数据安全:系统采取多种措施保障数据安全,如数据库加密、访问控制等,防止数据泄露非法访问。 请假审批流程:系统支持请假申请的逐级审批,包括班主任审批院系领导审批(针对超过三天的请假)。学生可以随时查看请假申请的审批进展情况。 请假记录管理:系统记录学生的所有请假记录,包括请假时间、原因、审批状态及审批意见等,供学生审批人员查询。 学生在线请假:学生可以通过系统在线填写请假申请,包括请假的起止日期请假原因,并提交给班主任审批。超过三天的请假需经班主任审批后,再由院系领导审批。 出勤信息记录:任课老师可以在线记录学生的上课出勤情况,包括迟到、早退、旷课请假等状态。 出勤信息查询:学生、任课老师、班主任、院系领导学校领导均可根据权限查看不同范围的学生上课出勤信息。学生可以查看自己所有学年的出勤信息,任课老师可以查看所教班级的出勤信息,班主任院系领导可以查看本班或本院系的出勤信息,学校领导可以查看全校的出勤信息。 出勤统计与分析:系统提供出勤统计功能,可以按班级、学期等条件统计学生的出勤情况,帮助管理人员了解学生的出勤状况
开发语言:Java 框架:SSM(Spring、Spring MVC、MyBatis) JDK版本:JDK 1.8 或以上 开发工具:Eclipse 或 IntelliJ IDEA Maven版本:Maven 3.3 或以上 数据库:MySQL 5.7 或以上 此压缩包包含了本毕业设计项目的完整内容,具体包括源代码、毕业论文以及演示PPT模板。 项目配置完成后即可运行,若需添加额外功能,可根据需求自行扩展。 运行条件 确保已安装 JDK 1.8 或更高版本,并正确配置 Java 环境变量。 使用 Eclipse 或 IntelliJ IDEA 打开项目,导入 Maven 依赖,确保依赖包下载完成。 配置数据库环境,确保 MySQL 服务正常运行,并导入项目中提供的数据库脚本。 在 IDE 中启动项目,确认所有服务正常运行。 主要功能简述: 用户管理:系统管理员负责管理所有用户信息,包括学生、任课老师、班主任、院系领导学校领导的账号创建、权限分配等。 数据维护:管理员可以动态更新维护系统所需的数据,如学生信息、课程安排、学年安排等,确保系统的正常运行。 系统配置:管理员可以对系统进行配置,如设置数据库连接参数、调整系统参数等,以满足不同的使用需求。 身份验证:系统采用用户名密码进行身份验证,确保只有授权用户才能访问系统。不同用户类型(学生、任课老师、班主任、院系领导、学校领导、系统管理员)具有不同的操作权限。 权限控制:系统根据用户类型分配不同的操作权限,确保用户只能访问操作其权限范围内的功能数据。 数据安全:系统采取多种措施保障数据安全,如数据库加密、访问控制等,防止数据泄露非法访问。 请假审批流程:系统支持请假申请的逐级审批,包括班主任审批院系领导审批(针对超过三天的请假)。学生可以随时查看请假申请的审批进展情况。 请假记录管理:系统记录学生的所有请假记录,包括请假时间、原因、审批状态及审批意见等,供学生审批人员查询。 学生在线请假:学生可以通过系统在线填写请假申请,包括请假的起止日期请假原因,并提交给班主任审批。超过三天的请假需经班主任审批后,再由院系领导审批。 出勤信息记录:任课老师可以在线记录学生的上课出勤情况,包括迟到、早退、旷课请假等状态。 出勤信息查询:学生、任课老师、班主任、院系领导学校领导均可根据权限查看不同范围的学生上课出勤信息。学生可以查看自己所有学年的出勤信息,任课老师可以查看所教班级的出勤信息,班主任院系领导可以查看本班或本院系的出勤信息,学校领导可以查看全校的出勤信息。 出勤统计与分析:系统提供出勤统计功能,可以按班级、学期等条件统计学生的出勤情况,帮助管理人员了解学生的出勤状况
此压缩包包含了本毕业设计项目的完整内容,具体包括源代码、毕业论文以及演示PPT模板。 开发语言:Java 框架:SSM(Spring、Spring MVC、MyBatis) JDK版本:JDK 1.8 或以上 开发工具:Eclipse 或 IntelliJ IDEA Maven版本:Maven 3.3 或以上 数据库:MySQL 5.7 或以上 项目配置完成后即可运行,若需添加额外功能,可根据需求自行扩展。 运行条件 确保已安装 JDK 1.8 或更高版本,并正确配置 Java 环境变量。 使用 Eclipse 或 IntelliJ IDEA 打开项目,导入 Maven 依赖,确保依赖包下载完成。 配置数据库环境,确保 MySQL 服务正常运行,并导入项目中提供的数据库脚本。 在 IDE 中启动项目,确认所有服务正常运行。 主要功能简述: 请假审批流程:系统支持请假申请的逐级审批,包括班主任审批院系领导审批(针对超过三天的请假)。学生可以随时查看请假申请的审批进展情况。 请假记录管理:系统记录学生的所有请假记录,包括请假时间、原因、审批状态及审批意见等,供学生审批人员查询。 学生在线请假:学生可以通过系统在线填写请假申请,包括请假的起止日期请假原因,并提交给班主任审批。超过三天的请假需经班主任审批后,再由院系领导审批。 出勤信息记录:任课老师可以在线记录学生的上课出勤情况,包括迟到、早退、旷课请假等状态。 出勤信息查询:学生、任课老师、班主任、院系领导学校领导均可根据权限查看不同范围的学生上课出勤信息。学生可以查看自己所有学年的出勤信息,任课老师可以查看所教班级的出勤信息,班主任院系领导可以查看本班或本院系的出勤信息,学校领导可以查看全校的出勤信息。 出勤统计与分析:系统提供出勤统计功能,可以按班级、学期等条件统计学生的出勤情况,帮助管理人员了解学生的出勤状况。 用户管理:系统管理员负责管理所有用户信息,包括学生、任课老师、班主任、院系领导学校领导的账号创建、权限分配等。 数据维护:管理员可以动态更新维护系统所需的数据,如学生信息、课程安排、学年安排等,确保系统的正常运行。 系统配置:管理员可以对系统进行配置,如设置数据库连接参数、调整系统参数等,以满足不同的使用需求。 身份验证:系统采用用户名密码进行身份验证,确保只有授权用户才能访问系统。不同用户类型(学生、任课老师、班主任、院系领导、学校领导、系统管理员)具有不同的操作权限。 权限控制:系统根据用户类型分配不同的操作权限,确保用户只能访问操作其权限范围内的功能数据。 数据安全:系统采取多种措施保障数据安全,如数据库加密、访问控制等,防止数据泄露非法访问。
内容概要:本文详细介绍了低压差分信号(LVDS)技术及其优势。LVDS是一种高速、低功耗、低噪声的差分信号传输技术,广泛应用于系统内部的数据传输,如芯片间、板卡间、机架间等。文章首先解释了差分信号传输的基本原理,接着重点讨论了LVDS的工作机制、电气特性、优势以及应用场景。LVDS通过降低信号摆幅来提高传输速度,同时保持良好的抗噪性低电磁干扰(EMI)。文中还对比了LVDS与其他信号传输技术(如TTL、CMOS、CML等)的优劣,指出LVDS在功耗、速度抗噪性方面的显著优势。此外,文章探讨了LVDS的不同配置(点对点、多分支、多点)及其适用场景,并介绍了LVDS在总线设计中的应用,特别是Bus LVDS嵌入式时钟架构。; 适合人群:具备一定电子工程基础的研发人员,尤其是从事高速数据传输系统设计的工程师。; 使用场景及目标:①理解差分信号传输的基本原理LVDS的工作机制;②评估LVDS在不同应用场景下的优势,如高速数据传输、低功耗设计、抗噪性要求高的环境;③掌握LVDS在点对点、多分支多点配置中的设计要点;④了解LVDS与其他信号传输技术的对比,选择最适合的方案。; 其他说明:LVDS技术不仅限于系统内部通信,还可以与其他协议结合用于系统间通信。此外,LVDS的高效编码简单的终端技术使其成为现代通信系统中的重要组成部分。文章还提到了一些高级应用,如LVDS-LVPECL转换、嵌入式时钟架构等,为复杂系统设计提供了更多选择。
开发语言:Java 框架:SSM(Spring、Spring MVC、MyBatis) JDK版本:JDK 1.8 或以上 开发工具:Eclipse 或 IntelliJ IDEA Maven版本:Maven 3.3 或以上 数据库:MySQL 5.7 或以上 此压缩包包含了本毕业设计项目的完整内容,具体包括源代码、毕业论文以及演示PPT模板。 项目配置完成后即可运行,若需添加额外功能,可根据需求自行扩展。 运行条件 确保已安装 JDK 1.8 或更高版本,并正确配置 Java 环境变量。 使用 Eclipse 或 IntelliJ IDEA 打开项目,导入 Maven 依赖,确保依赖包下载完成。 配置数据库环境,确保 MySQL 服务正常运行,并导入项目中提供的数据库脚本。 在 IDE 中启动项目,确认所有服务正常运行。 主要功能简述: 用户管理:系统管理员负责管理所有用户信息,包括学生、任课老师、班主任、院系领导学校领导的账号创建、权限分配等。 数据维护:管理员可以动态更新维护系统所需的数据,如学生信息、课程安排、学年安排等,确保系统的正常运行。 系统配置:管理员可以对系统进行配置,如设置数据库连接参数、调整系统参数等,以满足不同的使用需求。 身份验证:系统采用用户名密码进行身份验证,确保只有授权用户才能访问系统。不同用户类型(学生、任课老师、班主任、院系领导、学校领导、系统管理员)具有不同的操作权限。 权限控制:系统根据用户类型分配不同的操作权限,确保用户只能访问操作其权限范围内的功能数据。 数据安全:系统采取多种措施保障数据安全,如数据库加密、访问控制等,防止数据泄露非法访问。 请假审批流程:系统支持请假申请的逐级审批,包括班主任审批院系领导审批(针对超过三天的请假)。学生可以随时查看请假申请的审批进展情况。 请假记录管理:系统记录学生的所有请假记录,包括请假时间、原因、审批状态及审批意见等,供学生审批人员查询。 学生在线请假:学生可以通过系统在线填写请假申请,包括请假的起止日期请假原因,并提交给班主任审批。超过三天的请假需经班主任审批后,再由院系领导审批。 出勤信息记录:任课老师可以在线记录学生的上课出勤情况,包括迟到、早退、旷课请假等状态。 出勤信息查询:学生、任课老师、班主任、院系领导学校领导均可根据权限查看不同范围的学生上课出勤信息。学生可以查看自己所有学年的出勤信息,任课老师可以查看所教班级的出勤信息,班主任院系领导可以查看本班或本院系的出勤信息,学校领导可以查看全校的出勤信息。 出勤统计与分析:系统提供出勤统计功能,可以按班级、学期等条件统计学生的出勤情况,帮助管理人员了解学生的出勤状况
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值