(pta)1091 N-自守数 (15 分)

1091 N-自守数 (15 分)

如果某个数 K 的平方乘以 N 以后,结果的末尾几位数等于 K,那么就称这个数为“N-自守数”。例如 3×92^​2​​ =25392,而 25392 的末尾两位正好是 92,所以 92 是一个 3-自守数。本题就请你编写程序判断一个给定的数字是否关于某个 N 是 N-自守数。

输入格式:

输入在第一行中给出正整数 M(≤20),随后一行给出 M 个待检测的、不超过 1000 的正整数。

输出格式:

对每个需要检测的数字,如果它是 N-自守数就在一行中输出最小的 N 和 NK​2的值,以一个空格隔开;否则输出 No。注意题目保证 N<10。

输入样例:
3
92 5 233
输出样例:
3 25392
1 25
No

做题首先要有思路:我的思路就是,循环镶嵌,再利用取余得到值然后比较输出
#include<stdio.h>
#include<math.h>
main ()
{
	int M = 0, N = 0, K = 0;
	int  le = 0;
	scanf ("%d", &M);
	int H[ 4 ] = { 0 };
	int r = 0;
	//输出循环次数
	for ( int x = 0; x<M; x++ )
	{
		scanf ("%d", &K);
		N = K;//临时存储
		int js = 0;//用于计数  记录是几位数字
		//利用存储判断输出数字是几位数
		while ( N != 0 )
		{
			N /= 10;
			js++;
		}
		//i其实就是题目中的N;
		for ( int i = 0; i<10; i++ )
		{
			le = i*pow (K, 2);
			for ( int j = 0; j<js; j++ )
			{
				//将得到的值存储到数组中
				H[ j ] = ( int ) ( le / pow (10, j) ) % 10;
			}
			int r = 0;
			//开始计算数值
			for ( int j = 0; j<js; j++ )
			{
				r = r + H[ j ] * pow (10, j);
			}
			//开始判断:如果是相等就输出,不相等就输出No
			if ( r == K )
			{
				printf ("%d %d\n", i, le);
				break;
			}
			else if ( i == 9 )
			{
				printf ("No\n");
			}

		}
	}

	getchar ();
	return 0;

}

我不是在简单的编程,而是在创造一个“世界”。

江客:时荒

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值