西瓜书-2.3性能度量

2.3-性能度量

对学习器泛化性能的评估,不仅要实验估计方法,还有衡量模型泛化能力的评价标准,即性能度量。

性能度量反映任务需求,模型的“好坏”是相对的,不仅取决于算法和数据,还决定于任务需求。

不同任务的性能度量标准不相同,如下:

  • 预测任务。

    • 给定样例集D={(x1, y1)…},其中yi是示例xi的真实标记,评价学习器f的性能,即把学习器预测结果f(x)真实标记y进行比较。
  • 回归任务。

    • 最常用的性能度量是均方误差

    E ( f ; D ) = 1 m ∑ i = 1 m ( f ( x i ) − y i ) 2 ( 2.3 − 1 ) E(f;D)\quad=\quad \frac{1}{m}\sum_{i=1}^{m}(f(x_i)-y_i)^2 \qquad (2.3-1) E(f;D)=m1i=1m(f(xi)yi)2(2.31)

    • 更一般的,对于数据分布D概率密度函数p(.),均方误差描述为

    E ( f ; D ) = ∫ x ∼ D ( f ( x ) − y ) 2 p ( x ) d x ( 2.3 − 2 ) E(f;D)\quad=\quad \int_{x\sim D}^{} (f(x)-y)^2p(x)dx \qquad (2.3-2) E(f;D)=xD(f(x)y)2p(x)dx(2.32)

  • 分类任务。

    • 常用性能度量如下。

2.3.1-错误率与精度

分类任务最常用的2种性能度量,适用于二分类任务,也适用于多分类任务。

2.3.2-查准率、查全率与F1

意义

错误率和精度虽常用,但存在局限,如“挑出西瓜中有多少比例是好瓜”之类,由此引入查准率(precision)、查全率(recall)等性能度量。

分类结果混淆矩阵

对于二分类问题,将样例根据真实类别与学习器预测类别的组合划分,得到混淆矩阵

(true、false、positive、negative)

预测结果
真实情况正例反例
正例TP(真正例)FN(假反例)
反例FP(假正例)TN(真反例)

其中存在如下关系:
1 、 T P + F P + F N + T N = 样例总数 ( 2.3 − 7 ) 2 、查准率 P = T P T P + F P ( 2.3 − 8 ) 3 、查全率 R = T P T P + F N ( 2.3 − 9 ) 1、TP+FP+FN+TN=\text{样例总数}\qquad (2.3-7)\\ 2、查准率P=\frac{TP}{TP+FP}\qquad (2.3-8)\\ 3、查全率R=\frac{TP}{TP+FN}\qquad (2.3-9) 1TP+FP+FN+TN=样例总数(2.37)2、查准率P=TP+FPTP(2.38)3、查全率R=TP+FNTP(2.39)

关系

查准率和查全率是1对矛盾的度量。

一般,查准率高时,查全率R会偏低,反之一样。

举例:

查全率高,查准率低:希望尽可能多地选出好瓜,则要增加选瓜的数量,极限情况是选出所有瓜,从而好瓜都选出来,因此查准率P的分母增大,导致P降低;而查全率R,其分母不变,分子TP变大,从而提高。

P-R图(查准率-查全率曲线)

根据学习器预测结果对样例排序,排在前面的是学习器认为“最可能”正例的样本,按此规则逐个把样本作为正例进行预测,则每次可计算当前的P、R;以查准率P为纵轴、查全率R为横轴,如下图:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XrER1cKs-1661348143487)(E:\affairs\my_affairs\extended_learning\notes\pics\image-20220822110206504.png)

特性:

1、学习器C的PR曲线被学习器A的曲线完全“包住”,则认为A的性能优于C。

2、若曲线发生交叉,很难说明优劣。因此设计新的性能度量,如下:

  • 平衡点(Break-Event Point,BEP)

是“查准率=查全率”时的取值,BEP值大的其学习器性能更优

图2.3-1中,基于BEP,认为A的性能优于B。

  • F1度量以及其一般形式Fβ

F1度量是基于查准率和查全率的调和平均定义的,其一般形式Fβ加权调和平均,对查准率/查全率有不同偏好。
F 1 定义: 1 F 1 = 1 2 . ( 1 P + 1 R ) ( 2.3 − 10 ) F β 定义: 1 F β = 1 1 + β 2 . ( 1 P + β 2 R ) ( 2.3 − 11 ) F1定义:\frac{1}{F1}=\frac{1}{2}.(\frac{1}{P}+\frac{1}{R})\qquad (2.3-10)\\ F_{\beta}定义:\frac{1}{F_{\beta}}=\frac{1}{1+\beta^2}.(\frac{1}{P}+\frac{\beta^2}{R})\qquad (2.3-11)\\ F1定义:F11=21.(P1+R1)(2.310)Fβ定义:Fβ1=1+β21.(P1+Rβ2)(2.311)
形式改写为:
F 1 = 2 ∗ P ∗ R P + R = 2 ∗ T P 样例总数 + T P − T N ( 2.3 − 12 ) F β = ( 1 + β 2 ) ∗ P ∗ R ( β 2 ∗ P ) + R ( 2.3 − 13 ) F1=\frac{2*P*R}{P+R}=\frac{2*TP}{\text{样例总数}+TP-TN}\qquad (2.3-12)\\ F_{\beta}=\frac{(1+\beta^2)*P*R}{(\beta^2*P)+R}\qquad (2.3-13) F1=P+R2PR=样例总数+TPTN2TP(2.312)Fβ=(β2P)+R(1+β2)PR(2.313)
β>0度量查全率对查准率的相对重要性,其中:

  1. β=1,即标准的F1。
  2. β>1,查全率有更大影响,如逃犯信息检索,尽可能少漏信息。
  3. 0<β<1,查准率影响更大,如商品推荐系统,目标是推荐内容更准确且少打扰用户。

复杂情况

存在多个二分类混淆矩阵,若欲在n个混淆矩阵上考察查全率和查准率,方法如下:

  • 法1:先在各混淆矩阵上分别计算出查准率和查全率,然后再计算平均值,即得到其**“宏查准率”、“宏查全率”、“相应的宏F1”**。
  • 法2:先将各混淆矩阵对应元素平均,得到TP、FP、TN、FN的对应平均值,再计算出**“微查准率”、“微查全率”、“相应的微F1”**。

2.3.3-ROC与AUC

  • 引入

学习器是为测试样本产生1个实值或概率预测,后将这个预测值与1个分类阈值(或“截断点”)比较预测值大于阈值则为正例,反之为反例,预测值好坏直接决定学习器泛化能力,而根据预测值可对测试样本排序,排序本身的好坏体现学习器一般情况下泛化性能好坏。

ROC(受试者工作特征,receiver operating characteristic)曲线是研究学习器泛化性能的工具,

  • ROC

类似于PR图,横轴是“假正例率”(FPR)纵轴是“真正例率”(TPR),各自定义如下:
T P R = T P T P + F N = T P 正例总数 ( 2.3 − 14 ) F P R = F P T N + F P = F P 反例总数 ( 2.3 − 15 ) TPR=\frac{TP}{TP+FN}= \frac{TP}{正例总数}\qquad (2.3-14)\\ FPR=\frac{FP}{TN+FP}= \frac{FP}{反例总数}\qquad (2.3-15) TPR=TP+FNTP=正例总数TP(2.314)FPR=TN+FPFP=反例总数FP(2.315)
直线y=x对角线对应于**“随机猜测”模型**,而点(0,1)对应于所有正例排在所有反例之前的"理想模型"。

基于有限个测试样例绘制ROC图,过程如下:

给定m+个正例和m-个反例,据学习器预测结果对样例排序,然后将分类阈值设为最大,即将所有样例均预测为反例,此时TPR=0、FPR=0,在(0,0)点标记1个点。

之后将分类阈值依次设计为每个样例的预测值,则对应标记点坐标是(x,y),
当前为真正例,对应标记点 ( x , y + 1 m + ) ; 当前为假正例,对应标记点 ( x + 1 m − , y ) 。 当前为真正例,对应标记点(x,y+\frac{1}{m^+} );当前为假正例,对应标记点(x+\frac{1}{m^-},y)。 当前为真正例,对应标记点(x,y+m+1);当前为假正例,对应标记点(x+m1,y)
之后用线段连接相邻点即得。

  • 特性

1、类似PR图,学习器A的ROC曲线将学习器B的ROC曲线完全包住,则A的性能更优

2、ROC曲线交叉,比较ROC曲线下面积,即AUC(area under ROC curve),即定积分。

  • AUC

其考虑样本预测的排序质量,与排序误差有紧密联系。

形式化地看, AUC考虑的是样本预测的排序质量,因此它与排序误差有紧 密联系.给定m+个正例和m-个反例,令D+和D-
分别表示正、反例集合, 则排序"损失" (loss)定义为:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1p5k8n2u-1661348143488)(E:\affairs\my_affairs\extended_learning\notes\pics\image-20220824195106765.png)

lrank即为ROC曲线上的面积.

存在
A U C = 1 − l r a n k ( 2.3 − 17 ) AUC=1-l_{rank}\qquad (2.3-17) AUC=1lrank(2.317)

2.3.4-代价敏感错误率与代价曲线

为权衡不同类型错误所造成的不同损失,可为错误赋予“非均等代价”。

  • 二分类代价矩阵
预测结果
真实情况第0类第1类
第0类0cost01
第1类cost100
  1. costij即第i类预测为第j类样本的代价。
  2. 一般costij=0。
  3. 若第0类判别为第1类的损失更大,则 cost01> cost10
  4. 损失承担相差越大,则 cost01>与 cost10差别越大。
  5. 重要的是代价比值,而非绝对值。
  • 非均等代价

上方中的性能度量中如错误率之类基本都是基于均等代价的角度考虑,直接计算错误次数,而未考虑不同错误的损失。

在非均等代价下,希望的不是最小化错误次数,而是最小化“总体代价”

由此引入“代价敏感”错误率以及代价曲线

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值