“温故而知新”
- 基底是一组向量,其中的每一个向量被称作”基向量“;
- 基向量常被要求标准化,也就是把原来的基向量除以模长,化为单位长的基向量。这是因为:
一个向量u在某基底下的坐标,实际上是该向量在各个基向量方向上的投影长度。
举个例子:在二维平面中,取基底 e 1 = ( 1 , 0 ) , e 2 = ( 0 , 1 ) e_{1}=(1,0),e_{2}=(0,1) e1=(1,0),e2=(0,1),那么向量 u = ( 4 , 5 ) u=(4,5) u=(4,5)分别在向量 e 1 、 e 2 e_{1}、e_{2} e1、e2方向上的投影长度分别是4,5。
而计算一个向量 u u u在另外一个向量 v v v方向上的投影 ∣ u ∣ cos θ |u|\cos\theta ∣u∣cosθ。
考虑向量的内积,即 u ⋅ v = ∣ u ∣ ∣ v ∣ cos θ u\cdot v=\left | u \right |\left |v\right|\cos \theta u⋅v=∣u∣∣v∣cosθ.
当向量 v v v的模长 ∣ v ∣ = 1 |v|=1 ∣v∣=1时,那么 u ⋅ v = ∣ u ∣ ∣ v ∣ cos θ = ∣ u ∣ cos θ u\cdot v=|u||v|\cos\theta=|u|\cos\theta u⋅v=∣u∣∣v∣cosθ=∣u∣cosθ。
而向量的内积容易计算。
关于一些证明的可选方法:
- 证明 ( f ( x ) , g ( x ) ) = h ( x ) (f(x),g(x))=h(x) (f(x),g(x))=h(x)
- 按照最大公因式的定义;
- 左右相互整除,均首1;
- h ( x ) ∣ f ( x ) , h ( x ) ∣ g ( x ) h(x)|f(x),h(x)|g(x) h(x)∣f(x),h(x)∣g(x)且 h ( x ) h(x) h(x)是f(X)和g(x)的组合;
- 证明 ( f ( x ) , g ( x ) ) = 1 (f(x),g(x))=1 (f(x),g(x))=1
- 找 u ( x ) , v ( x ) s . t . u ( x ) f ( x ) + v ( x ) g ( x ) = 1 u(x),v(x)~s.t.u(x)f(x)+v(x)g(x)=1 u(x),v(x) s.t.u(x)f(x)+v(x)g(x)=1;
- 证明 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)的任一公因式为非零常数;
- 反证法,存在不可约多项式 p ( x ) s . t . p ( x ) ∣ f ( x ) , p ( x ) ∣ g ( x ) p(x)~s.t.p(x)|f(x),p(x)|g(x) p(x) s.t.p(x)∣f(x),p(x)∣g(x);
- f(x)的根不都是g(x)的根;
- 最大公因式、互素与数域无关;