以下伪码来自某《数值线性代数》教科书,非原创
乘幂法
function [a,k,er]=Power(A)
%定义乘幂法函数文件
%a:表示该方法下矩阵A的最大特征值
%k:表示停机时实际的迭代次数
%er:表示停机时实际的绝对误差
tol=1e-6;%绝对误差限
[n,m]=size(A);
if n~=m %判断输入的合法性
error('Wrong Input');
end
u=ones(n,1);q=max(abs(u));
k=0;
while true
y=A*u;
q0=q;
q=max(abs(y));
if abs(q-q0)<tol|k>1e4 %设置停机条件
break;
end
u=y/q;
k=k+1;
end
er=abs(q0-q);
a=q;
反幂法
function [a,k,er]=InversePower(A)
%定义反幂法函数文件
%a:表示该方法下矩阵A的最小特征值
%k:表示停机时实际的迭代次数
%er:表示停机时实际的绝对误差
tol=1e-6;%绝对误差限
[n,m]=size(A);
if n~=m %判断输入的合法性
error('Wrong Input');
end
u=ones(n,1);q=max(abs(u));
k=0;
while true
y=A\u;%解出y
q0=q;
q=max(abs(y));
if abs(q-q0)<tol|k>1e4 %设置停机条件
break;
end
u=y/q;
k=k+1;
end
er=abs(q0-q);
a=1/q;
注:反幂法在计算量较大的情况下,貌似计算不出结果,考考你,找出问题,请留言。个人猜测:y=A\u处会出问题,考虑到矩阵A的奇异情况。