Leetcode 188 买卖股票的最佳时机Ⅳ
困难题,股票最大利润问题
题目
给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)
示例1
输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例2
输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
提示
- 0 <= k <= 100
- 0 <= prices.length <= 1000
- 0 <= prices[i] <= 1000
解法
- 定义数组:使用两个动态规划数组buy和sell
- 对于前i天的股票价格,buys[j]表示第j次买入时的最大收益【此时手中必然持股】
- 对于前i天的股票价格,sells[j]表示第j次卖出时的最大收益【此时手中必然不持股】
- 状态转移方程
- 遍历到 i 天时
- j的范围从1到k次,对于第j次而言
- buys[j] = max(buys[j], sells[j-1] - prices[i]) 在持股的情况下,要么是在 i 之前第j次买入的,要么是在本天【i】买入的最大收益
- sells[j] = max(sells[j], buys[j] + prices[i]) 在不持股的情况下,要么是在 i 之前第j次卖出,要么是在本天【i】卖出获得的最大收益
- 初始化
- 对于首天而言,无论第几次交易buys[j]均为 - prices[j] 表示持股
- 对于首天而言,无论第几次交易sells[j]均为 0 表示不持股的状态下的最大收益
- 遍历顺序
- 初始化已经考虑了首天 因此 i 从
1
到len(prices)-1
,j 从1
到k
次;
- 初始化已经考虑了首天 因此 i 从
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
buys = [-prices[0] for _ in range(k+1)]
sells = [0 for _ in range(k+1)]
for i in range(1,len(prices)):
for j in range(1,k+1):
buys[j] = max(buys[j], sells[j-1]-prices[i]) #在第i之前买第j次 或者 在第i天买第j次
sells[j] = max(sells[j],buys[j]+prices[i]) #在第i天之前卖掉第j次 或者 在第i天卖掉第j次
return sells[k]
- 时间复杂度 O(nk)
- 空间复杂度 O(nk)
Leetcode 123. 买卖股票的最佳时机 III
k为2的情况下就是123. 买卖股票的最佳时机 III
题目
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例1
输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例2
输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例3
输入:prices = [7,6,4,3,1]
输出:0
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。
提示
- 1 <= prices.length <= 10^5
- 0 <= prices[i] <= 10^5
解法
只用定义4个状态,第一次买入,第一次卖出,第二次买入,第二次卖出即可;
class Solution:
def maxProfit(self, prices: List[int]) -> int:
b1,b2 = -prices[0], -prices[0]
s1,s2 = 0, 0
for i in range(1,len(prices)):
b1 = max(b1, -prices[i])
s1 = max(s1, b1+prices[i])
b2 = max(b2, s1-prices[i])
s2 = max(s2, b2+prices[i])
return s2
- 时间复杂度 O(n)
- 空间复杂度 O(1)