深入理解2D卷积和3D卷积

在项目中用到了conv3但是对其背后的原理还有一些模糊的地方,conv2d与多通道的conv2d的区别在哪里?conv3d的思想理论是什么?对此进行探究和记录…
首先要明确多通道的2d卷积和3d卷积是不一样的,3d是可以在通道中移动的,2d不可以

卷积核的维度

卷积核的维度指的的进行滑窗操作的维度,而滑窗操作不在channel维度上进行,不管有几个channel,它们都共享同一个滑窗位置(虽然2D多channel卷积的时候每个channel上的卷积核权重是独立的,但滑窗位置是共享的)。所以在讨论卷积核维度的时候,是不把channel维加进去的。

2D conv的卷积核就是 ( c , k h , k w ) (c, k_h, k_w) (c,kh,kw),因此,对于RGB图像做2D卷积,卷积核可以是conv2D(3,3) 而不该是conv3D(3,3,3);

3D conv的卷积核就是 ( c , k d , k h , k w ) (c, k_d, k_h, k_w) (c,kd,kh,kw),其中k_d就是多出来的第三维,根据具体应用,在视频中就是时间维,在CT图像中就是层数维.

2D卷积

单通道

首先了解什么是卷积核,卷积核(filter)是由一组参数构成的张量,卷积核相当于权值,图像相当于输入量,卷积的操作就是根据卷积核对这些输入量进行加权求和。我们通常用卷积来提取图像的特征。

直观理解如下:下图使用的是 3x3卷积核(height x width,简写 H × W H \times W H×W )的卷积,padding为1(周围的虚线部分,卷积时为了使卷积后的图像大小与原来一致,会对原图像进行填充),两个维度上的strides均为1(滑动步长,这里体现为每次滑动几个小方格)。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3RueSX6s-1684241254644)(null)]
针对单通道,输入图像的channel为1,即输入大小为 ( 1 , h e i g h t , w e i g h t ) (1, height, weight) (1,height,weight),卷积核尺寸为 ( 1 , k h , k w ) (1, k_h, k_w) (1,kh,kw),卷积核在输入图像上的的空间维度(即(height, width)两维)上进行进行滑窗操作,每次滑窗和 ( k h , k w ) (k_h, k_w) (kh,kw) 窗口内的values进行卷积操作(现在都用相关操作取代),得到输出图像中的一个value。

上图是通道数为1的2维图像的卷积操作,静态表示为:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-P5WnZPSx-1684241254668)(null)]

多通道

了解了单通道图像的卷积之后,再来看多通道图像的卷积,我们知道灰度图像只有一个通道,而 RGB 图像有R、G、B三个通道。
多通道图像的一次卷积要对所有通道上同一位置的元素做加权和,因此卷积核的shape变成了 H × W × c h a n n e l s H \times W \times channels H×W×channels,没有错卷积核变成了3维,但这不是3维卷积,因为我们区分几维卷积看的是卷积核可以在几个维度上的滑动,卷积核是不能在 channels上滑动的,因为上面提到每次卷积都要关联所有通道上同一位置上的元素。
3通道的卷积表示如下:是对每个通道进行2d卷积操作然后把最后的值相加的到右侧的小方块。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BsfaZIGY-1684241254677)(null)]
上图将3个通道分开表示,卷积核也分开表示,filter1、filter2、filter3均为二维卷积核,堆叠在一起便形成了 H × W × 3 H \times W \times 3 H×W×3 的卷积核,同样的我们将3个通道也堆叠在一起;

针对多通道,假定输入图像的channel为c,即输入大小为 ( c , h e i g h t , w e i g h t ) (c, height, weight) (c,height,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值