题目描述
设有一个N×M方格的棋盘(1≤N≤100,1≤M≤100)
求出该棋盘中包含有多少个正方形、多少个长方形(不包括正方形)。
例如:当 N=2,M=3时:
正方形的个数有8个:即边长为11的正方形有66个;
边长为2的正方形有2个。
长方形的个数有10个:
即
2×1的长方形有4个
1×2的长方形有3个:
3×1的长方形有2个:
3×2的长方形有1个:
如上例:输入:2,3
输出:8,10
输入格式
N,M
输出格式
正方形的个数与长方形的个数
输入输出样例
输入 #1
2 3
输出 #1
8 10
import java.util.*;
public class Main {
public static void main(String[] args) {
new Main().sf();
}
int n = 0, m = 0;
int x = 0, y = 0, z = 0, t = 0;
public void sf() {
Scanner in = new Scanner(System.in);
n = in.nextInt();
m = in.nextInt();
x = ((m+1) * ( n+1) * m * n) / 4;
for (; m >= 1 && n >= 1; m--, n--) {
y += m*n;
}
System.out.println(y + " "+ (x - y));
}
}
借用的大佬的推导公式
正方形:
边长为1的正方形个数为n*m
边长为2的正方形个数为(n-1)*(m-1) (自己动手想想)
边长为3的正方形为个数(n-2)*(m-2)
边长为min(n,m)的正方形为个数s1=(n-min(n,m)+1)*(m-min(n,m)+1)
然后从边长为1到min(m,m)的正方形个数全部加起来;
长方形:(包括正方形,好像正方形属于长方形来着?)
长为1的长方形(包括正方形)有n个
长为2的长方形(包括正方形)有n-1个
长为n的长方形(包括正方形)有1个
长为1到n的长方形1+2+…+n个
同理 宽为1的长方形(包括正方形)有m个
宽为2的长方形(包括正方形)有m-1个
宽为m的长方形(包括正方形)有1个
宽为1-m的长方形1+2+…+m个
然后把它们乘起来,根据乘法原理,总数s2=((1+n)*(1+m)nm)/4;
题目要求的是“非正方形的长方形”,因此要减去s1;