(OSTrack)Joint Feature Learning and Relation Modeling for Tracking A One-Stream Framework


论文链接
代码链接

发表在2022年 ECCV上的一篇文章

动机

目前流行的两流两阶段跟踪框架分别提取模板和搜索区域特征,然后进行关系建模,因此提取的特征缺乏对目标的感知,目标-背景辨别能力有限。为了解决上述问题,我们提出了一种新的单流跟踪(OSTrack)框架,通过将模板搜索图像对与双向信息流连接起来,将特征学习和关系建模统一起来。这样,通过相互引导,可以动态地提取具有鉴别性的面向目标的特征。

贡献

  • 提出了一个简洁高效的单流的跟踪框架;
  • 在Transformer的多头注意力机制中加入了,早期候选消除模块(Early Candidate
    Elimination),从而加快了模型的推理速度
  • 在许多基准上的大量实验结果表明,该跟踪器的性能明显优于最先进的算法。

跟踪pipeline

这里的pipeline的中文意思翻译成了管道,但是看了网上的帖子,这里翻译成主要解决方案
三种pipeline
其中每个矩形高度表示模型的相对大小/尺寸

跟踪器描述
     a     早期的孪生跟踪器(SiamFC、SiamRPN)和鉴别跟踪器(DIMP、ATOM)属于这种类型,首先通过CNN提取模板和搜索区域的特征,然后再通过后续的关系建模网络来融合这些特征用于后续的任务
b近几年为了更好的进行关系建模,提出了Transformer层,这个关系建模模块模型较大,支持双向的信息交互,代表论文有TransT、STARK。双重结构带来了性能的提升,但不可避免的降低了推理速度
c我们首次将特征提取和关系建模无缝地结合成一个统一的pipeline。该方法在模板和搜索区域之间提供了自由的信息流,且计算量较小。它不仅通过相互引导生成面向目标的特征,而且在训练和测试时间上都是有效的。

网络结构

在这里插入图片描述如有错误,请留言

与双流跟踪器比较

  • 以往的双流Transformer融合跟踪器均采用孪生框架,先分别提取模板和搜索区域的特征,只采用Transformer层对提取的特征进行融合。因此,这些方法提取的特征是不自适应的,可能会丢失一些判别信息,这是无法弥补的。相比之下,OSTrack在第一阶段直接将线性投影的模板和搜索区域图像拼接起来,将特征提取和关系建模无缝地结合在一起,通过模板和搜索区域的相互引导,可以提取出面向目标的特征。
  • 以往的Transformer融合跟踪器只采用ImageNet预训练骨干网,Transformer层随机初始化,收敛速度变慢,而OSTrack得益于预训练的ViT模型,收敛速度更快。
  • 单流框架为进一步提高模型性能和推理速度提供了识别和丢弃无用背景区域的可能性。

候选消除模块

在这里插入图片描述
其中qi、Kz、Kx、V表示令牌hi z的查询向量,表示模板对应的键矩阵,表示搜索区域对应的键矩阵,表示值矩阵注意权重 w i x w^x_ {i} wix决定了模板部分 h z i h^i_ {z} hzi与所有搜索区域标记(候选)之间的相似度。 w i x w^x_ {i} wix的第j个项(1≤j≤n, n为输入搜索区域令牌数)决定了 h z i h^i_ {z} hzi与第j个候选项的相似度。然而,当计算目标和每个候选对象之间的相似度时,输入模板通常包含引入噪声的背景区域。因此,与其将每个候选部件与所有模板部件的相似度相加,i = 1,…,Nz,我们取 w x φ w^φ_ {x} wxφ,其中φ =⌊Wz/ 2⌋+Wz·⌊Hz 2⌋(其中φ−th的token对应于原始模板图像的中间部分)为代表的相似度。这是相当合理的,因为中心模板部分已经通过自我注意聚合了足够的信息来表示目标。
在这里插入图片描述
在编码器层进行多头注意操作后,插入所提出的候选消除模块,如图网络结构中的 b所示。此外,记录所有剩余候选的原始顺序,以便在最后阶段恢复。候选恢复阶段,前面提到的候选剔除模块打乱了候选序列的原始顺序,使得候选序列不可能重新塑造为之前的feature map,因此我们将剩余的候选序列恢复到原始顺序,然后填充缺失的位置。由于丢弃的候选对象属于不相关的背景区域,因此不会影响分类和回归任务。换句话说,它们只是作为重塑操作的占位符。因此,我们首先恢复剩余候选项的顺序,然后在它们之间加零。

实验(简略)

在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: "Learning to Compare: Relation Network for Few-Shot Learning" 是一篇关于Few-Shot Learning(小样本学习)的论文,提出了一种称为“关系网络”的新型神经网络架构。 该网络旨在解决小样本学习中的问题,该问题通常会导致在只有极少量的训练样本的情况下,模型的泛化性能下降。关系网络使用一个子网络来提取图像特征,并通过计算这些特征之间的关系来对它们进行分类。 关系网络的特点是它在执行分类任务时能够捕捉物体之间的关系和上下文信息,因此在少量样本的情况下,它的性能比其他方法更好。该网络已经被广泛应用于小样本学习领域,并在多项实验中获得了优秀的表现。 ### 回答2: 本文主要介绍了一种基于关系网络的few-shot学习方法——Relation Network(RN)。Few-shot学习是一种类别识别的任务,旨在从非常少量(通常是几个)的样本中学习新的类别。RN为此提供了一种强大的框架,可以在few-shot学习中能够有效地捕捉物体之间的关系,从而实现精确的类别识别。 RN在模型设计中引入了两个重要的组件:特征提取器和关系网络。特征提取器通常是卷积神经网络(CNN),它可以提取出每个样本的特征表示。关系网络的作用是计算出每对样本之间的关系,将这些关系汇总到一起,最终出现样本之间的相对关系。在计算样本之间的关系时,RN采用的是一种全连接神经网络,它对每一对样本的特征进行融合,然后输出一个特定类别的置信度。 值得注意的是,RN的关系网络不仅可以使用在few-shot学习中,也可以应用于全局分类问题。此外,RN采用了一些有效的技巧来加速测试阶段的推理速度,比如使用浅层矩阵乘法以减少计算量,和简单的欧氏距离作为度量衡量。 总而言之,RN是一种强大的学习方法,特别是在few-shot学习方面,可以实现更好的判别性能和更准确的类别识别。不过,同时也存在一些限制,比如需要更多的数据集来训练样本的特征提取器,以及容易出现过拟合问题。因此,RN还需要进行更深入的研究和优化,以实现更大范围的应用和实际效果。 ### 回答3: 学习比较:关系网络是一种少样本学习的方法,旨在解决少样本学习问题中的挑战。传统的机器学习方法需要大量数据来训练模型。而在现在许多领域,例如医疗诊断和工业生产,只有很少的数据可用于训练模型。在这种情况下,少样本学习就变得非常重要。学习比较:关系网络是少样本学习的一种新方法,它通过学习对象之间的关系来捕捉它们之间的相似性和差异性。 学习比较:关系网络包含两个部分:特征提取器和关系网络。特征提取器将输入图像转换为对应的向量表示,而关系网络则对这些向量进行比较,从而推断它们之间的关系。关系网络可以用来处理各种不同的问题,例如分类、回归和生成等。 学习比较:关系网络的优点是,它可以利用少量的数据来学习,并且可以在不同的任务之间共享知识。这使它成为处理少样本学习问题时的一个有力工具。在实际应用中,学习比较:关系网络已经被广泛应用于图像分类、目标检测和语音识别等领域,并产生了许多显著的结果。未来,随着越来越多的研究者开始使用这种方法,我们可以期待看到更多的成功案例,并进一步将学习比较:关系网络应用到更广泛的领域,以帮助人们解决难题并改善生活质量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值