题意:
一个n*m的 矩阵。
找有多少条这样的路径:
1.路径长度大于4
2.路径上的数字必须是连续的且只相差1 如 1 2 3 4 5 / 3 4 5 6 7(当然还有负数)
3.保证路径是最长的
4.只能走 上下左右 不能斜着
思路:
写的时候一直以为-1 和 1是特殊点。后来发现不是的。
in[x][y]记录xy的入度。
每当有一天路径经过的时候,入度就减1
当入度减到零的时候,才可以进队列!!
因为每条路径过来的长度是不同的,必须保证最长的一条路径过来时候才往下走。
然后就是叠加的地方,因为要路径长度大于4才行。
一开始想的记录每个路径长 那岂不是爆空间,后来发现大于4的路径看成一类路径就行。
#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <iostream>
#include <algorithm>
#include <iomanip>
using namespace std;
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define pd(n) printf("%d\n", n)
#define pc(n) printf("%c", n)
#define pdd(n,m) printf("%d %d", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n,m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sc(n) scanf("%c",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define ss(str) scanf("%s",str)
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define per(i,a,n) for(int i=n;i>=a;i--)
#define mem(a,n) memset(a, n, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define mod(x) ((x)%MOD)
#define gcd(a,b) __gcd(a,b)
#define lowbit(x) (x&-x)
#define pii map<int,int>
#define mk make_pair
#define rtl rt<<1
#define rtr rt<<1|1
typedef pair<int,int> PII;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const int MOD = 1e9 + 7;
//const double eps = 1e-9;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
//const int inf = 0x3f3f3f3f;
inline int read()
{
int ret = 0, sgn = 1;
char ch = getchar();
while(ch < '0' || ch > '9')
{
if(ch == '-')
sgn = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9')
{
ret = ret*10 + ch - '0';
ch = getchar();
}
return ret*sgn;
}
inline void Out(int a)
{
if(a>9) Out(a/10);
putchar(a%10+'0');
}
int qpow(int m, int k, int mod)
{
int res = 1, t = m;
while (k)
{
if (k&1)
res = res * t % mod;
t = t * t % mod;
k >>= 1;
}
return res;
}
ll gcd(ll a,ll b){return b==0?a : gcd(b,a%b);}
ll lcm(ll a,ll b){return a*b/gcd(a,b);}
ll inv(ll x,ll m){return qpow(x,m-2,m)%m;}
const int N = 5e5+10;
int n,m;
int a[1005][1005];
int cnt[1005][1005][4];
int vis[1005][1005];
int in[1005][1005];
// u d l r
int to[4][2] = {-1,0,1,0,0,-1,0,1};
struct node{
int x,y;
int val;
node(){}
node(int x_,int y_,int val_)
{
x = x_;y = y_;val = val_;
}
};
signed main()
{
int t = 1;
while(t--)
{
cin>>n>>m;
for(int i = 0 ; i < n ; i ++)
for(int j = 0 ; j < m ; j ++)
cin>>a[i][j];
for(int i = 0 ; i < n ; i ++)
{
for(int j = 0 ; j < m ; j ++)
{
int flag = 1;
for(int k = 0 ;k < 4 ; k ++)
{
int x = i+to[k][0];
int y = j+to[k][1];
if(x >= 0 && x < n && y >= 0 && y < m)
{
if(a[x][y] == a[i][j]-1)
{
flag = 0;
in[i][j] ++;
}
}
}
cnt[i][j][1] = flag;
}
}
queue<node> que;
for(int i = 0 ; i < n ; i ++)
{
for(int j = 0 ; j < m ; j ++)
{
if(cnt[i][j][1] == 1)
{
vis[i][j] = 1;
que.push(node(i,j,a[i][j]));
}
}
}
while(!que.empty())
{
node tmp = que.front();que.pop();
for(int i = 0 ;i < 4 ; i ++)
{
int x = tmp.x+to[i][0];
int y = tmp.y+to[i][1];
if(x >= 0 && x < n && y >= 0 && y < m)
{
if(a[x][y] == tmp.val+1)
{
cnt[x][y][2] = (cnt[tmp.x][tmp.y][1]+cnt[x][y][2])%MOD;
cnt[x][y][3] = (cnt[tmp.x][tmp.y][2]+cnt[x][y][3])%MOD;
cnt[x][y][4] = (cnt[tmp.x][tmp.y][3]+cnt[x][y][4]+cnt[tmp.x][tmp.y][4])%MOD;
in[x][y]--;
if(in[x][y] == 0)
{
que.push(node(x,y,a[x][y]));
}
}
}
}
}
// cout<<endl;
// for(int i = 0 ; i < n ; i ++)
// {
// for(int j = 0 ; j < m ; j ++)
// {
// cout<<cnt[i][j][4]<<" ";
// }
// cout<<endl;
// }
// cout<<endl;
int ans = 0;
for(int i = 0 ; i < n ; i ++)
{
for(int j = 0 ; j < m ; j ++)
{
int flag = 1;
for(int k = 0 ;k < 4 ; k ++)
{
int x = i+to[k][0];
int y = j+to[k][1];
if(x >= 0 && x < n && y >= 0 && y < m)
{
if(a[x][y] == a[i][j]+1)
{
flag = 0;
break;
}
}
}
if(flag)
ans = (ans+cnt[i][j][4])%MOD;
}
}
cout<<ans<<endl;
}
return 0;
}