Tr A(矩阵快速幂)

Tr A

A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
Output
对应每组数据,输出Tr(A^k)%9973。
Sample Input
2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9
Sample Output
2
2686

这道题。。。。。
充分让我认识到了自己的蠢,把9973写成9937样例不对还一直找不出来,还交了一发。。。(脑子真的是个好东西哦)

ac代码:

#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;

int f;
int mod=9973;
struct node{
	int m[11][11];
};
node mul(node a,node b){
	node ans;
	memset(ans.m ,0,sizeof(ans.m ));
	for(int i=1;i<=f;i++){
		for(int j=1;j<=f;j++){
			for(int k=1;k<=f;k++){
				ans.m[i][j] =(ans.m[i][j] +a.m[i][k]*b.m[k][j]%mod)%mod;
			}
		}
	}
	return ans;
}

node ksm(node a,long int b){
	node res;
	memset(res.m,0,sizeof(res.m));
	for(int i=1;i<=f;i++){
		res.m [i][i]=1;
	}
	while(b){
		if(b&1){
			
			res=mul(res,a);
		}
		
		b>>=1;
		a=mul(a,a);
		/*for(int i=1;i<=f;i++){
			for(int j=1;j<=f;j++){
				cout<<a.m [i][j]<<" ";
			}
			cout<<endl;
		}*/
	}
	return res;
}

int main(){
	
	long int n,b;
	cin>>n;
	
	while(n--){
		cin>>f>>b;
		
			node a,b1;
		for(int i=1;i<=f;i++){
			for(int j=1;j<=f;j++){
				cin>>a.m [i][j];
			}
		}
		b1=ksm(a,b);
		int ans=0;
		/*for(int i=1;i<=f;i++){
			for(int j=1;j<=f;j++){
				cout<<b1.m [i][j]<<" ";
			}
			cout<<endl;
		}*/
		for(int i=1;i<=f;i++){
			ans+=b1.m [i][i];
			ans%=mod;
			//cout<<b1.m [i][i]<<endl;
		}
		cout<<ans<<endl;
		
		
		
	}
	return 0;
}

/*
2
2 4
1 1
0 1
3 99999999
1 2 3
4 5 6
7 8 9
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值