Tr A
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
Output
对应每组数据,输出Tr(A^k)%9973。
Sample Input
2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9
Sample Output
2
2686
这道题。。。。。
充分让我认识到了自己的蠢,把9973写成9937样例不对还一直找不出来,还交了一发。。。(脑子真的是个好东西哦)
ac代码:
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
int f;
int mod=9973;
struct node{
int m[11][11];
};
node mul(node a,node b){
node ans;
memset(ans.m ,0,sizeof(ans.m ));
for(int i=1;i<=f;i++){
for(int j=1;j<=f;j++){
for(int k=1;k<=f;k++){
ans.m[i][j] =(ans.m[i][j] +a.m[i][k]*b.m[k][j]%mod)%mod;
}
}
}
return ans;
}
node ksm(node a,long int b){
node res;
memset(res.m,0,sizeof(res.m));
for(int i=1;i<=f;i++){
res.m [i][i]=1;
}
while(b){
if(b&1){
res=mul(res,a);
}
b>>=1;
a=mul(a,a);
/*for(int i=1;i<=f;i++){
for(int j=1;j<=f;j++){
cout<<a.m [i][j]<<" ";
}
cout<<endl;
}*/
}
return res;
}
int main(){
long int n,b;
cin>>n;
while(n--){
cin>>f>>b;
node a,b1;
for(int i=1;i<=f;i++){
for(int j=1;j<=f;j++){
cin>>a.m [i][j];
}
}
b1=ksm(a,b);
int ans=0;
/*for(int i=1;i<=f;i++){
for(int j=1;j<=f;j++){
cout<<b1.m [i][j]<<" ";
}
cout<<endl;
}*/
for(int i=1;i<=f;i++){
ans+=b1.m [i][i];
ans%=mod;
//cout<<b1.m [i][i]<<endl;
}
cout<<ans<<endl;
}
return 0;
}
/*
2
2 4
1 1
0 1
3 99999999
1 2 3
4 5 6
7 8 9
*/