一、几种特殊线性表
(一)线性表——具有相同类型的数据元素的有限序列。
(二)特殊线性表
1、栈——仅在表尾进行插入和删除操作的线性表。
2、队列——在一端进行插入操作,而另一端进行删除操作的线性表。
3、串——零个或多个字符组成的有限序列(被限制元素的类型为字符) 。
4、(多维)数组——线性表中的数据元素可以是线性表,但所有元素的类型相同。
5、广义表——线性表中的数据元素可以是线性表,且元素的类型可以不相同。
(三)数组是由一组类型相同的数据元素构成的有序集合,每个元素受n(n≥1)个线性关系的约束,并称该数组为 n 维数组。
二、数组特点
1、元素本身可以具有某种结构,属于同一数据类型;
2、数组是一个具有固定格式和数量的数据集合。
三、数组基本操作
⑴ 存取:给定一组下标,读出对应的数组元素;
⑵ 修改:给定一组下标,存储或修改与其相对应的数组元素。
存取和修改操作本质上只对应一种操作——寻址
四、 矩阵的压缩存储
(一)特殊矩阵和稀疏矩阵
特殊矩阵:矩阵中很多值相同的元素并且它们的分布有一定的规律。
稀疏矩阵:矩阵中有很多零元素。
压缩存储的基本思想是:
⑴ 为多个值相同的元素只分配一个存储空间;
⑵ 对零元素不分配存储空间。
(二)特殊矩阵的压缩存储——对角矩阵 (带状矩阵)
对角矩阵:所有非零元素都集中在以主对角线为中心的带状区域中,除了主对角线和它的上下方若干条对角线的元素外,所有其他元素都为零。
(三)稀疏矩阵的压缩存储
将稀疏矩阵中的每个非零元素表示为:
(行号,列号,非零元素值)——三元组
定义三元组:
template <class T>
struct element
{
int row, col; //行号,列号
T item //非零元素值
};
三元组表:将稀疏矩阵的非零元素对应的三元组所构成的集合,按行优先的顺序排列成一个线性表。
五、广义表
(一)定义和一些概念
广义表(列表): n ( 0 )个表元素组成的有限序列,记作: LS = (a0, a1, a2, …, an-1)
LS是表名,ai是表元素,它可以是表 (称为子表),可以是数据元素(称为原子)。 n为表的长度。n = 0 的广义表为空表。
长度:广义表LS中的直接元素的个数;
深度:广义表LS中括号的最大嵌套层数。
表头:广义表LS非空时,称第一个元素为LS的表头;
表尾:广义表LS中除表头外其余元素组成的广义表。
(二)广义表的存储结构——头尾表示法
enum Elemtag {Atom, List};
template <class T>
struct GLNode {
Elemtag tag;
union {
T data;
struct
{
GLNode *hp, *tp;
} ptr;
};
};
头尾表示法中:指针不再表示链表中节点之间的关系。