os.environ['CUDA_VISIBLE_DEVICES'] = '0,1(卡号)'
1、位置
至于import torch之前
2、和device映射关系
os.environ['CUDA_VISIBLE_DEVICES'] = '6,1,2'
device = torch.device("cuda:0")
这里device的cuda0指向的是卡6,cuda2指向卡2
3、.cuda()和.to(device)区别
摘自pytorh .to(device) 和.cuda()的区别
.to(device) 可以指定CPU 或者GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 单GPU或者CPU
model.to(device)
#如果是多GPU
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model,device_ids=[0,1,2])
model.to(device)
.cuda()只能指定GPU
#指定某个GPU
os.environ['CUDA_VISIBLE_DEVICE']='1'
model.cuda()
#如果是多GPU
os.environment['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
device_ids = [0,1,2,3]
net = torch.nn.Dataparallel(net, device_ids =device_ids)
net = torch.nn.Dataparallel(net) # 默认使用所有的device_ids
net = net.cuda()