2020-10-04 机器学习系统设计Python语言实现(第一章:机器学习的思维)

1、人机界面

后台无缝运行。

2、设计原理

定义目标和规格说明、准备和探索数据、实现、测试、部署。

2.1 问题类型

探索、描述、推理、预测、原因、机制。

2.2 问题是否正确

检查问题是否有答案或者有部分答案,若存在部分答案则可以加快进程。

2.3 任务

2.3.1 人工任务:计划、设计、实现。
2.3.2 机器任务:分类、聚类、回归。
2.3.2.1 机器学习任务:有监督学习、无监督学习、强化学习。
2.3.2.2 分类:二分类和多分类。
2.3.2.3 回归:关心连续变量,例如概率。
2.3.2.4 聚类(无监督):可以使用任意封闭的度量值,来确定每个实例所属的聚类簇。
2.3.2.5 降维:特征预处理,将高维数据投影为一维、二维、三维数据。
2.3.2.6 错误:设计的系统中,应该具备健壮的故障和错误检测程序,需要获取从错误中学习的能力。
2.3.2.7 优化:目标函数、决策函数(在特定约束内可变)、参数(不变)、约束条件。
2.3.2.8 线性规划:线性函数总是凸函数,即只有一个极小值。
2.3.2.9 模型:解决一类问题。几何模型(线性变换)、概率模型(贝叶斯分类器)、逻辑模型(决策树)。
2.3.2.10 特征:特征选择的主要任务是从噪声中分离信号。

2.4 统一建模语言

2.4.1 类图:对系统的静态结构进行建模(类的抽象蓝图)。
2.4.2 对象图:系统运行时的逻辑视图。
2.4.3 活动图:对系统的工作流程建模(活动(圆角矩形)、路径(箭头)、决策(菱形))。
2.4.4 状态图:系统改变行为依赖于其所在状态,状态图用于对此进行建模。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值