Hessian矩阵

参考文献link. link.

Hessian Matrix,它有着广泛的应用一个Hessian Matrix涉及到很多数学相关的知识点,比如泰勒公式、极值判断、矩阵特征值及特征向量、二次型等。本篇文章,主要说明多元情况下的极值判定、hessian矩阵与二次型的联系。

黑塞矩阵(Hessian Matrix),是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。黑塞矩阵常用于牛顿法解决优化问题,利用黑塞矩阵可判定多元函数的极值问题。在工程实际问题的优化设计中,所列的目标函数往往很复杂,为了使问题简化,常常将目标函数在某点邻域展开成泰勒多项式来逼近原函数,此时函数在某点泰勒展开式的矩阵形式中会涉及到黑塞矩阵。

1、二元函数的泰勒公式

对于一元函数的泰勒公式,大家都有所了解,其意义是使用多次多项式来近似表达原函数f(x),一元函数的f(x)的泰勒公式如下:在这里插入图片描述
二元函数的泰勒展开式为:

在这里插入图片描述
将上述展开式写成矩阵形式,则有:
在这里插入图片描述

2、判断极值

在这里插入图片描述
一元函数,如果在x0处的一阶导数为0,二阶导数为正,那么我们就可以认为x0为极小值点。对于图像中的二元函数呢?我们是可以类推的。根据上述二元泰勒公式可得二阶近似表达式:在这里插入图片描述
我们可以根据二元函数的二阶表达式的正负进行判定。
对于这种情形,这里面会涉及到Hessian矩阵正定以及负定的判断,这里令△x=[dx,dy],H为第三项二阶矩阵,如果对于任意向量△x,都有△xH△xT为正,那么有最小值,且H为正定的。如果对于任意向量△x,都有△xH△xT非负,那么有最大值,且H为负定的。

3、二次型

二次型: link.

可以发现上面矩阵H即为Hessian矩阵,具有对称性。而二次型的矩阵也是对称的。
最小化二次型函数,其中A是实对称二阶矩阵,即是hessian矩阵。
较大特征值所对应的特征向量方向上的函数值变化快,较小特征值所对应的特征向量方向上的函数值变化慢。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值