NMS
NMS 又叫非极大值抑制。简单来说,它的思想是比如在一张图像上有多个anchor box。我们可以根据这多个anchor box根据概率进行排序,最大概率的anchor box肯定是保留下来了。这时候,我们需要计算剩下的其他的anchor box 与概率最大的anchor box的iou。如果个iou 大于某个阀值,我们就将这个anchor box删除。这样,我们就可以删除某些anchor box 了。接下来,我们可以继续找到类别概率第二大的anchor box ,然后再删除一些anchor box.....这样最后我们就可以得到一些我们想要的候选区域。
全卷积
全卷积可以用来替代全连接层的作用。除此之外,输入全卷积神经网络的输入图片尺寸可以是不相同的,输出的结果根据输入的结果的大小的改变而改变。但是输入全连接的输入图片尺寸必须是大小一样的。因为根据隐藏层和输出层神经元的个数是固定的,所以权重参数的shape 就必须是一样的,换言之,图片的输入的尺寸必须固定。
大卷积核和小卷积核的区别
本次就参数方向而言,比如说一个7*7*C的feature map 我们用7*7*C的卷积核的效果和使用三个3*3*C卷积核的效果是相当的。但是我们使用7*7*C使用的参数是49C,但是我们使用后者来说参数是使用27C 。所以,就参数的角度来说后者更少,计算量更小。