NMS,全卷积,大卷积核和小卷积核区别

NMS

NMS 又叫非极大值抑制。简单来说,它的思想是比如在一张图像上有多个anchor box。我们可以根据这多个anchor box根据概率进行排序,最大概率的anchor box肯定是保留下来了。这时候,我们需要计算剩下的其他的anchor box 与概率最大的anchor box的iou。如果个iou 大于某个阀值,我们就将这个anchor box删除。这样,我们就可以删除某些anchor box 了。接下来,我们可以继续找到类别概率第二大的anchor box ,然后再删除一些anchor box.....这样最后我们就可以得到一些我们想要的候选区域。

 全卷积

全卷积可以用来替代全连接层的作用。除此之外,输入全卷积神经网络的输入图片尺寸可以是不相同的,输出的结果根据输入的结果的大小的改变而改变。但是输入全连接的输入图片尺寸必须是大小一样的。因为根据隐藏层和输出层神经元的个数是固定的,所以权重参数的shape 就必须是一样的,换言之,图片的输入的尺寸必须固定。

 大卷积核和小卷积核的区别

本次就参数方向而言,比如说一个7*7*C的feature map 我们用7*7*C的卷积核的效果和使用三个3*3*C卷积核的效果是相当的。但是我们使用7*7*C使用的参数是49C,但是我们使用后者来说参数是使用27C 。所以,就参数的角度来说后者更少,计算量更小。

卷积神经网络(Convolutional Neural Networks, CNN)在车道线检测中常被用于图像处理任务,因为CNN特别适合处理具有空间结构的数据,如图像中的特征。车道线检测通常涉及以下几个步骤: 1. 数据预处理:收集和标注训练数据,包括车道线清晰的图片和对应的标注信息,如二值化的车道线边界。 2. **模型架构**:设计CNN架构,常见的模型可能包括卷积层(用于特征提取)、池化层(减小数据维度并保留关键特征)、平滑处理层(如反卷积或上采样层,用于恢复原始尺寸)和最终的连接层或回归层(用于预测车道线的位置或概率)。 3. **卷积层**:使用多个卷积核进行特征检测,比如边缘检测、纹理识别等。每个卷积层会学习到不同的特征表示。 4. **池化层**:如最大池化或平均池化,降低数据的空间分辨率,同时提高模型的不变性和鲁棒性。 5. **非极大值抑制(NMS)**:对预测结果进行后处理,去除重复的车道线提议,保留最有可能的车道线。 6. **损失函数**:选择适合的损失函数,如均方误差或交并比(Intersection over Union, IoU)来衡量预测结果与真实标记的匹配度。 7. **训练与优化**:使用反向传播算法更新模型参数,优化器如Adam或SGD等,结合学习率调整策略。 8. **测试和评估**:在验证集上评估模型性能,如精度、召回率、F1分数等,根据需要进行微调。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值