数据科学技术与应用【中国大学MOOC】:机器学习建模分析(一)_第六次作业_答案

数据科学作业:机器学习线性回归模型分析
本文介绍了在'数据科学技术与应用'课程中关于机器学习的第六次作业,涉及使用Energy Efficiency数据集训练线性回归模型预测制热能耗。内容包括在全数据集上计算模型的RMSE和R2指标,以及通过训练集和测试集评估模型性能。

数据科学技术与应用

机器学习建模分析(一) 第六次作业 答案

题目来源:中国大学MOOC-东华大学-宋晖等-数据科学技术与应用

1 ( 100分 ) Energy Efficiency数据集( ENB2012_data.xlsx,ENB2012.names)记录不同房屋的制热能源消耗和制冷能源消耗。包括768条记录,8个特征属性,两个预测值。具体说明见ENB2012.names。
1)在全数据集上训练线性回归模型预测制热能耗,计算模型性能:RMSE以及R2;
2)将数据集划分训练集和测试集,在训练集上训练线性回归模型,分析模型在训练集和测试集上的性能。

import pandas
from sklearn.linear_model import LinearRegression
from sklearn import model_selection
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HerbertHu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值