LeetCode刷题复盘笔记—268. 丢失的数字

题目:268. 丢失的数字

题目描述:
给定一个包含 [0, n] 中 n 个数的数组 nums ,找出 [0, n] 这个范围内没有出现在数组中的那个数。

进阶:
你能否实现线性时间复杂度、仅使用额外常数空间的算法解决此问题?

示例 1:
输入:nums = [3,0,1]
输出:2
解释:n = 3,因为有 3 个数字,所以所有的数字都在范围 [0,3] 内。2 是丢失的数字,因为它没有出现在 nums 中。
示例 2:

输入:nums = [0,1]
输出:2
解释:n = 2,因为有 2 个数字,所以所有的数字都在范围 [0,2] 内。2 是丢失的数字,因为它没有出现在 nums 中。
示例 3:

输入:nums = [9,6,4,2,3,5,7,0,1]
输出:8
解释:n = 9,因为有 9 个数字,所以所有的数字都在范围 [0,9] 内。8 是丢失的数字,因为它没有出现在 nums 中。
示例 4:

输入:nums = [0]
输出:1
解释:n = 1,因为有 1 个数字,所以所有的数字都在范围 [0,1] 内。1 是丢失的数字,因为它没有出现在 nums 中。

一、排序处理

C++版本:

class Solution {
public:
    int missingNumber(vector<int>& nums) {
        int n=nums.size();
        sort(nums.begin(),nums.begin()+n);
        for(int i=0;i<n;++i){
            if(nums[i]!=i) return i;
        }
        return n;
    }
};

Python版本:

class Solution(object):
    def missingNumber(self, nums):
        n=len(nums)
        nums.sort()
        for i in range(n):
            if nums[i]!=i:
                return i
        return n;

时间复杂度:
sort()函数排序的时间复杂度为O(nlogn),扫描数组的时间复杂度为 O(n),因此总的时间复杂度为 O(nlogn)。
空间复杂度:
空间复杂度取决于使用的排序算法,根据排序算法是否进行原地排序(即不使用额外的数组进行临时存储),空间复杂度为 O(1) 或 O(n)。

二、哈希表

C++版本:

class Solution {
public:
    int missingNumber(vector<int>& nums) {
        unordered_map<int, int> hashtable;
        for(int j=0;j<nums.size();++j){
            hashtable[nums[j]]=j;
        }
        for(int i=0;i<nums.size()+1;++i){
            if(hashtable.find(i)==hashtable.end()) return i;
        }
        return nums.size();
    }
};

Python版本:

class Solution(object):
    def missingNumber(self, nums):
        numset=set(nums)
        for i in range(len(nums)+1):
            if i not in numset:
                return i

时间复杂度:
集合的插入操作的时间复杂度都是 O(1),一共插入了 n 个数,时间复杂度为 O(n)。集合的查询操作的时间复杂度同样是 O(1),最多查询 n+1 次,时间复杂度为 O(n)。因此总的时间复杂度为 O(n)。
空间复杂度:
集合中会存储 n 个数,因此空间复杂度为 O(n)。

三、数学方法

在这里插入图片描述
C++版本:

class Solution {
public:
    int missingNumber(vector<int>& nums) {
        int n=nums.size();
        int t=n*(n+1)/2;
        int sum=0;
        for(int num:nums){
            sum+=num;
        }
        return t-sum;
    }
};

Python版本:

class Solution(object):
    def missingNumber(self, nums):
        n=len(nums)
        t=n*(n+1)/2
        act_sum=sum(nums)
        return t-act_sum

时间复杂度:
扫描数组的时间复杂度为 O(n),因此总的时间复杂度为 O(n)
空间复杂度:
O(1)


总结

C++
sort()函数使用方法:

 sort(nums.begin(),nums.begin()+n);

注:默认为从小到大升序排列
若想降序,则

sort(nums.begin(),nums.begin()+n,std::greater<int>());

Python
sort()函数使用方法
对于数组nums[]排序:

nums.sort()

把一个数组nums[]初始化为哈希表numset方法:

numset=set(nums)

欢迎大家扫码关注本人公众号:编程复盘与思考随笔

(关注后可以免费获得本人在csdn发布的资源源码)

公众号主要记录编程和刷题时的总结复盘笔记和心得!并且分享读书、工作、生活中的一些思考感悟!在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Al资料站与复盘笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值