【数学】铅锤线法的加速

【铅垂线法的加速】 \huge\textsf{【铅垂线法的加速】} 【铅垂线法的加速】


想必大家都做过这样的题目: \textsf{想必大家都做过这样的题目:} 想必大家都做过这样的题目:

方法是铅锤线法。 \textsf{方法是铅锤线法。} 方法是铅锤线法。

先求蓝色直线解析式,然后与抛物线解析式相减,求出高度差最大值,最后计算出面积最大值。 \textsf{先求蓝色直线解析式,然后与抛物线解析式相减,求出高度差最大值,最后计算出面积最大值。} 先求蓝色直线解析式,然后与抛物线解析式相减,求出高度差最大值,最后计算出面积最大值。

但是如果善用数学归纳法,就能发现: \textsf{但是如果善用数学归纳法,就能发现:} 但是如果善用数学归纳法,就能发现:

三角形第三个顶点的横坐标与抛物线与直线两交点的中点的横坐标相等时,面积最大。 \color{#12c2e9}\large\texttt{三角形第三个顶点的横坐标与抛物线与直线两交点的中点的横坐标相等时,面积最大。} 三角形第三个顶点的横坐标与抛物线与直线两交点的中点的横坐标相等时,面积最大。

证: \textsf{证:} 证:

设抛物线: y = a ( x − m ) ( x − n ) = a x 2 − a ( m + n ) x + a m n \textsf{设抛物线:}y=a(x-m)(x-n)=ax^{2}-a(m+n)x+amn 设抛物线:y=a(xm)(xn)=ax

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值