【物理】不脱离外圆面问题

∣   不脱离外圆面问题     Nightguard   Series.   ∣ \begin{vmatrix}\Huge{\textsf{ 不脱离外圆面问题 }}\\\texttt{ Nightguard Series. }\end{vmatrix}  不脱离外圆面问题  Nightguard Series. 


整理自 https://www.bilibili.com/video/BV1iK4y1Q7mc?p=8(黄夫人)

请添加图片描述

问题一

如图,小物块受到轻微扰动,从一固定的光滑半圆面上最高点 A A A 处由静止滑下,试分析小物块的运动过程。

小物块会沿圆面圆周运动吗?





先思考小物块会不会做圆周运动。

做圆周运动需要向心力,下滑过程中小物块 v v v 增大,重力指向圆心的分力不断接近0 ,则必有一点处重力的分力不足以提供向心力,小物块脱离半圆面。接下来具体分析过程。

设滑离处为 P P P

在这里插入图片描述
∠ P O A = θ \angle POA=\theta POA=θ

小物块在 P P P 处脱离半圆面,则运动到 P P P 点瞬间,半圆面对它的作用力 F N = 0 F_N=0 FN=0

所以重力的分力提供向心力,

m g cos ⁡ θ = m v P 2 r mg\cos\theta=m\frac{v_P^2}{r} mgcosθ=mrvP2

小物块运动到 P P P 处时,由能量守恒得

m g r ( 1 − cos ⁡ θ ) = 1 2 m v P 2 mgr(1-\cos\theta)=\frac{1}{2}mv_P^2 mgr(1cosθ)=21mvP2

联立化简得 cos ⁡ θ = 2 3 . \cos\theta=\frac{2}{3}. cosθ=32.

因此小物块会在距离平面 2 3 r \frac{2}{3}r 32r 的高度脱离半圆面。


在这里插入图片描述

问题一

如图,小物块以一初速度从 P P P 点开始 沿 一固定的光滑 半圆面运动 到其最高点 A A A 处,求小物块到达 A A A 点时最大速度。

这不是能量守恒吗?





请注意:小物块需要沿半圆面运动,如果初速度过大则可能会出现脱离的情况

在这里插入图片描述
试分析小物块在地月轨道转移中的运动过程.jpg \footnotesize\color{grey}{\textbf{试分析小物块在地月轨道转移中的运动过程.jpg}} 试分析小物块在地月轨道转移中的运动过程.jpg

接下来正经分析。

同上一题,小物块在 P P P 点速度最大时 F N = 0 F_N=0 FN=0,重力的分力提供向心力,

m g cos ⁡ θ = m v P 2 r mg\cos\theta=m\frac{v_P^2}{r} mgcosθ=mrvP2

到达 A A A 点时能量守恒得

m g r ( 1 − cos ⁡ θ ) = 1 2 m v P 2 − 1 2 m v A 2 mgr(1-\cos\theta)=\frac{1}{2}mv_P^2-\frac{1}{2}mv_A^2 mgr(1cosθ)=21mvP221mvA2

代入数据计算即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值