感知机模型
单个神经元
手获取杯子温度,传到大脑,神经元感觉温度过高放下杯子。
神经网络即也让算法模拟这个神经元过程。
一个感知机解决不了,再加上一个感知机就可以解决复杂问题了。
感知机与逻辑回归输入都是线性回归,但是感知机是通过阈值判断,而逻辑回归是通过激活函数求得一个0-1的概率进行判断。
神经网络结构
一种结构的神经网络是一种算法的统称。
对于图像识别有特定的一些神经元结构,所以我们就不加隐层了,即这里用一层隐层 即可。
差异越大损失越大,所有样本的损失加起来求平均就是损失了。差异大小就可以通过熵解释了。目的减小交叉熵损失,使得越靠近真实目标值。
输入经过计算到输出,经过交叉熵损失计算,反过来我要通过损失梯度下降去求这里边每一部分神经元的权重去更新,从后往前更新权重,所以将梯度下降称之为反向传播了。
正向传播:输入经过一层一层的计算得出输出。
反向传播:即通过从后面计算损失再反过来更新权重。损失计算就是为了更新权重。
简单的神经网络实现手写数字图片识别
Mnist是一张张图片,但是在tensorflow已经把图片转换为像素值了。
类别目标值要进行独热编码,才能计算交叉熵损失。
这里数据直接通过API得到了,你也可以通过文件读取。
若获取1万个,只有5500,每次获取50个,即之后就重复获取直到满足1万个数据。
每批次,即每步提供50个数据后,优化一次参数,看下每次的准确率。
然后建立事件文件,即先把值都写到事件文件中,tflow再从文件中去读。
将要显示的图写进去。
命令行开启可视化。
优化识别图片时候,这些权重参数什么样子,其实组成的分布就是服从正态分布的。
简单的单层神经网络预测手写数字图片